Metamath Proof Explorer


Theorem hilbert1.1

Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion hilbert1.1 N P 𝔼 N Q 𝔼 N P Q x LinesEE P x Q x

Proof

Step Hyp Ref Expression
1 simp1 P 𝔼 N Q 𝔼 N P Q P 𝔼 N
2 simp2 P 𝔼 N Q 𝔼 N P Q Q 𝔼 N
3 simp3 P 𝔼 N Q 𝔼 N P Q P Q
4 eqidd P 𝔼 N Q 𝔼 N P Q P Line Q = P Line Q
5 neeq1 p = P p q P q
6 oveq1 p = P p Line q = P Line q
7 6 eqeq2d p = P P Line Q = p Line q P Line Q = P Line q
8 5 7 anbi12d p = P p q P Line Q = p Line q P q P Line Q = P Line q
9 neeq2 q = Q P q P Q
10 oveq2 q = Q P Line q = P Line Q
11 10 eqeq2d q = Q P Line Q = P Line q P Line Q = P Line Q
12 9 11 anbi12d q = Q P q P Line Q = P Line q P Q P Line Q = P Line Q
13 8 12 rspc2ev P 𝔼 N Q 𝔼 N P Q P Line Q = P Line Q p 𝔼 N q 𝔼 N p q P Line Q = p Line q
14 1 2 3 4 13 syl112anc P 𝔼 N Q 𝔼 N P Q p 𝔼 N q 𝔼 N p q P Line Q = p Line q
15 fveq2 n = N 𝔼 n = 𝔼 N
16 15 rexeqdv n = N q 𝔼 n p q P Line Q = p Line q q 𝔼 N p q P Line Q = p Line q
17 15 16 rexeqbidv n = N p 𝔼 n q 𝔼 n p q P Line Q = p Line q p 𝔼 N q 𝔼 N p q P Line Q = p Line q
18 17 rspcev N p 𝔼 N q 𝔼 N p q P Line Q = p Line q n p 𝔼 n q 𝔼 n p q P Line Q = p Line q
19 14 18 sylan2 N P 𝔼 N Q 𝔼 N P Q n p 𝔼 n q 𝔼 n p q P Line Q = p Line q
20 ellines P Line Q LinesEE n p 𝔼 n q 𝔼 n p q P Line Q = p Line q
21 19 20 sylibr N P 𝔼 N Q 𝔼 N P Q P Line Q LinesEE
22 linerflx1 N P 𝔼 N Q 𝔼 N P Q P P Line Q
23 linerflx2 N P 𝔼 N Q 𝔼 N P Q Q P Line Q
24 eleq2 x = P Line Q P x P P Line Q
25 eleq2 x = P Line Q Q x Q P Line Q
26 24 25 anbi12d x = P Line Q P x Q x P P Line Q Q P Line Q
27 26 rspcev P Line Q LinesEE P P Line Q Q P Line Q x LinesEE P x Q x
28 21 22 23 27 syl12anc N P 𝔼 N Q 𝔼 N P Q x LinesEE P x Q x