Metamath Proof Explorer


Theorem hilbert1.2

Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion hilbert1.2 PQ*xLinesEEPxQx

Proof

Step Hyp Ref Expression
1 an4 xLinesEEyLinesEEPxQxPyQyxLinesEEPxQxyLinesEEPyQy
2 simprl PQxLinesEEPxQxxLinesEE
3 simprr PQxLinesEEPxQxPxQx
4 simpl PQxLinesEEPxQxPQ
5 linethru xLinesEEPxQxPQx=PLineQ
6 2 3 4 5 syl3anc PQxLinesEEPxQxx=PLineQ
7 6 ex PQxLinesEEPxQxx=PLineQ
8 simprl PQyLinesEEPyQyyLinesEE
9 simprr PQyLinesEEPyQyPyQy
10 simpl PQyLinesEEPyQyPQ
11 linethru yLinesEEPyQyPQy=PLineQ
12 8 9 10 11 syl3anc PQyLinesEEPyQyy=PLineQ
13 12 ex PQyLinesEEPyQyy=PLineQ
14 7 13 anim12d PQxLinesEEPxQxyLinesEEPyQyx=PLineQy=PLineQ
15 eqtr3 x=PLineQy=PLineQx=y
16 14 15 syl6 PQxLinesEEPxQxyLinesEEPyQyx=y
17 1 16 biimtrid PQxLinesEEyLinesEEPxQxPyQyx=y
18 17 expd PQxLinesEEyLinesEEPxQxPyQyx=y
19 18 ralrimivv PQxLinesEEyLinesEEPxQxPyQyx=y
20 eleq2w x=yPxPy
21 eleq2w x=yQxQy
22 20 21 anbi12d x=yPxQxPyQy
23 22 rmo4 *xLinesEEPxQxxLinesEEyLinesEEPxQxPyQyx=y
24 19 23 sylibr PQ*xLinesEEPxQx