Metamath Proof Explorer


Theorem hlhilplus

Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H=LHypK
hlhilbase.u U=HLHilKW
hlhilbase.k φKHLWH
hlhilbase.l L=DVecHKW
hlhilplus.a +˙=+L
Assertion hlhilplus φ+˙=+U

Proof

Step Hyp Ref Expression
1 hlhilbase.h H=LHypK
2 hlhilbase.u U=HLHilKW
3 hlhilbase.k φKHLWH
4 hlhilbase.l L=DVecHKW
5 hlhilplus.a +˙=+L
6 5 fvexi +˙V
7 eqid BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx=BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx
8 7 phlplusg +˙V+˙=+BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx
9 6 8 ax-mp +˙=+BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx
10 eqid BaseL=BaseL
11 eqid EDRingKW=EDRingKW
12 eqid HGMapKW=HGMapKW
13 eqid EDRingKWsSet*ndxHGMapKW=EDRingKWsSet*ndxHGMapKW
14 eqid L=L
15 eqid HDMapKW=HDMapKW
16 eqid xBaseL,yBaseLHDMapKWyx=xBaseL,yBaseLHDMapKWyx
17 1 2 4 10 5 11 12 13 14 15 16 3 hlhilset φU=BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx
18 17 fveq2d φ+U=+BasendxBaseL+ndx+˙ScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxBaseL,yBaseLHDMapKWyx
19 9 18 eqtr4id φ+˙=+U