Metamath Proof Explorer


Theorem hlhilsmul2

Description: Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h H=LHypK
hlhilsbase.l L=DVecHKW
hlhilsbase.s S=ScalarL
hlhilsbase.u U=HLHilKW
hlhilsbase.r R=ScalarU
hlhilsbase.k φKHLWH
hlhilsmul2.m ·˙=S
Assertion hlhilsmul2 φ·˙=R

Proof

Step Hyp Ref Expression
1 hlhilsbase.h H=LHypK
2 hlhilsbase.l L=DVecHKW
3 hlhilsbase.s S=ScalarL
4 hlhilsbase.u U=HLHilKW
5 hlhilsbase.r R=ScalarU
6 hlhilsbase.k φKHLWH
7 hlhilsmul2.m ·˙=S
8 eqid EDRingKW=EDRingKW
9 1 8 2 3 dvhsca KHLWHS=EDRingKW
10 6 9 syl φS=EDRingKW
11 10 fveq2d φS=EDRingKW
12 7 11 eqtrid φ·˙=EDRingKW
13 eqid EDRingKW=EDRingKW
14 1 8 4 5 6 13 hlhilsmul φEDRingKW=R
15 12 14 eqtrd φ·˙=R