Metamath Proof Explorer


Theorem hlsuprexch

Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011)

Ref Expression
Hypotheses hlsuprexch.b B=BaseK
hlsuprexch.l ˙=K
hlsuprexch.j ˙=joinK
hlsuprexch.a A=AtomsK
Assertion hlsuprexch KHLPAQAPQzAzPzQz˙P˙QzB¬P˙zP˙z˙QQ˙z˙P

Proof

Step Hyp Ref Expression
1 hlsuprexch.b B=BaseK
2 hlsuprexch.l ˙=K
3 hlsuprexch.j ˙=joinK
4 hlsuprexch.a A=AtomsK
5 eqid <K=<K
6 eqid 0.K=0.K
7 eqid 1.K=1.K
8 1 2 5 3 6 7 4 ishlat2 KHLKOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0.K<Kxx<Kyy<Kzz<K1.K
9 simprl KOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0.K<Kxx<Kyy<Kzz<K1.KxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙x
10 8 9 sylbi KHLxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙x
11 neeq1 x=PxyPy
12 neeq2 x=PzxzP
13 oveq1 x=Px˙y=P˙y
14 13 breq2d x=Pz˙x˙yz˙P˙y
15 12 14 3anbi13d x=Pzxzyz˙x˙yzPzyz˙P˙y
16 15 rexbidv x=PzAzxzyz˙x˙yzAzPzyz˙P˙y
17 11 16 imbi12d x=PxyzAzxzyz˙x˙yPyzAzPzyz˙P˙y
18 breq1 x=Px˙zP˙z
19 18 notbid x=P¬x˙z¬P˙z
20 breq1 x=Px˙z˙yP˙z˙y
21 19 20 anbi12d x=P¬x˙zx˙z˙y¬P˙zP˙z˙y
22 oveq2 x=Pz˙x=z˙P
23 22 breq2d x=Py˙z˙xy˙z˙P
24 21 23 imbi12d x=P¬x˙zx˙z˙yy˙z˙x¬P˙zP˙z˙yy˙z˙P
25 24 ralbidv x=PzB¬x˙zx˙z˙yy˙z˙xzB¬P˙zP˙z˙yy˙z˙P
26 17 25 anbi12d x=PxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xPyzAzPzyz˙P˙yzB¬P˙zP˙z˙yy˙z˙P
27 neeq2 y=QPyPQ
28 neeq2 y=QzyzQ
29 oveq2 y=QP˙y=P˙Q
30 29 breq2d y=Qz˙P˙yz˙P˙Q
31 28 30 3anbi23d y=QzPzyz˙P˙yzPzQz˙P˙Q
32 31 rexbidv y=QzAzPzyz˙P˙yzAzPzQz˙P˙Q
33 27 32 imbi12d y=QPyzAzPzyz˙P˙yPQzAzPzQz˙P˙Q
34 oveq2 y=Qz˙y=z˙Q
35 34 breq2d y=QP˙z˙yP˙z˙Q
36 35 anbi2d y=Q¬P˙zP˙z˙y¬P˙zP˙z˙Q
37 breq1 y=Qy˙z˙PQ˙z˙P
38 36 37 imbi12d y=Q¬P˙zP˙z˙yy˙z˙P¬P˙zP˙z˙QQ˙z˙P
39 38 ralbidv y=QzB¬P˙zP˙z˙yy˙z˙PzB¬P˙zP˙z˙QQ˙z˙P
40 33 39 anbi12d y=QPyzAzPzyz˙P˙yzB¬P˙zP˙z˙yy˙z˙PPQzAzPzQz˙P˙QzB¬P˙zP˙z˙QQ˙z˙P
41 26 40 rspc2v PAQAxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xPQzAzPzQz˙P˙QzB¬P˙zP˙z˙QQ˙z˙P
42 10 41 mpan9 KHLPAQAPQzAzPzQz˙P˙QzB¬P˙zP˙z˙QQ˙z˙P
43 42 3impb KHLPAQAPQzAzPzQz˙P˙QzB¬P˙zP˙z˙QQ˙z˙P