Metamath Proof Explorer


Theorem hoicoto2

Description: The half-open interval expressed using a composition of a function into ( RR X. RR ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoicoto2.i φI:X2
hoicoto2.a A=kX1stIk
hoicoto2.b B=kX2ndIk
Assertion hoicoto2 φkX.Ik=kXAkBk

Proof

Step Hyp Ref Expression
1 hoicoto2.i φI:X2
2 hoicoto2.a A=kX1stIk
3 hoicoto2.b B=kX2ndIk
4 1 adantr φkXI:X2
5 simpr φkXkX
6 4 5 fvovco φkX.Ik=1stIk2ndIk
7 1 ffvelcdmda φkXIk2
8 xp1st Ik21stIk
9 7 8 syl φkX1stIk
10 9 elexd φkX1stIkV
11 2 fvmpt2 kX1stIkVAk=1stIk
12 5 10 11 syl2anc φkXAk=1stIk
13 12 eqcomd φkX1stIk=Ak
14 xp2nd Ik22ndIk
15 7 14 syl φkX2ndIk
16 15 elexd φkX2ndIkV
17 3 fvmpt2 kX2ndIkVBk=2ndIk
18 5 16 17 syl2anc φkXBk=2ndIk
19 18 eqcomd φkX2ndIk=Bk
20 13 19 oveq12d φkX1stIk2ndIk=AkBk
21 6 20 eqtrd φkX.Ik=AkBk
22 21 ixpeq2dva φkX.Ik=kXAkBk