Metamath Proof Explorer


Theorem hoidmvn0val

Description: The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvn0val.l L=xFinax,bxifx=0kxvolakbk
hoidmvn0val.x φXFin
hoidmvn0val.n φX
hoidmvn0val.a φA:X
hoidmvn0val.b φB:X
Assertion hoidmvn0val φALXB=kXvolAkBk

Proof

Step Hyp Ref Expression
1 hoidmvn0val.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvn0val.x φXFin
3 hoidmvn0val.n φX
4 hoidmvn0val.a φA:X
5 hoidmvn0val.b φB:X
6 1 4 5 2 hoidmvval φALXB=ifX=0kXvolAkBk
7 3 neneqd φ¬X=
8 7 iffalsed φifX=0kXvolAkBk=kXvolAkBk
9 6 8 eqtrd φALXB=kXvolAkBk