Metamath Proof Explorer


Theorem hoidmvn0val

Description: The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvn0val.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvn0val.x φ X Fin
hoidmvn0val.n φ X
hoidmvn0val.a φ A : X
hoidmvn0val.b φ B : X
Assertion hoidmvn0val φ A L X B = k X vol A k B k

Proof

Step Hyp Ref Expression
1 hoidmvn0val.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvn0val.x φ X Fin
3 hoidmvn0val.n φ X
4 hoidmvn0val.a φ A : X
5 hoidmvn0val.b φ B : X
6 1 4 5 2 hoidmvval φ A L X B = if X = 0 k X vol A k B k
7 3 neneqd φ ¬ X =
8 7 iffalsed φ if X = 0 k X vol A k B k = k X vol A k B k
9 6 8 eqtrd φ A L X B = k X vol A k B k