Metamath Proof Explorer


Theorem hosubsub2

Description: Law for double subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubsub2 S:T:U:S-opT-opU=S+opU-opT

Proof

Step Hyp Ref Expression
1 hosubcl T:U:T-opU:
2 honegsub S:T-opU:S+op-1·opT-opU=S-opT-opU
3 1 2 sylan2 S:T:U:S+op-1·opT-opU=S-opT-opU
4 3 3impb S:T:U:S+op-1·opT-opU=S-opT-opU
5 honegsubdi2 T:U:-1·opT-opU=U-opT
6 5 oveq2d T:U:S+op-1·opT-opU=S+opU-opT
7 6 3adant1 S:T:U:S+op-1·opT-opU=S+opU-opT
8 4 7 eqtr3d S:T:U:S-opT-opU=S+opU-opT