Metamath Proof Explorer


Theorem hpgcom

Description: The half-plane relation commutes. Theorem 9.12 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
hpgcom.b φBP
hpgcom.1 φAhp𝒢GDB
Assertion hpgcom φBhp𝒢GDA

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 hpgcom.b φBP
9 hpgcom.1 φAhp𝒢GDB
10 ancom AOcBOcBOcAOc
11 10 a1i φAOcBOcBOcAOc
12 11 rexbidv φcPAOcBOccPBOcAOc
13 1 2 3 7 4 5 6 8 hpgbr φAhp𝒢GDBcPAOcBOc
14 1 2 3 7 4 5 8 6 hpgbr φBhp𝒢GDAcPBOcAOc
15 12 13 14 3bitr4d φAhp𝒢GDBBhp𝒢GDA
16 9 15 mpbid φBhp𝒢GDA