Metamath Proof Explorer


Theorem hstle1

Description: The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstle1 S CHStates A C norm S A 1

Proof

Step Hyp Ref Expression
1 choccl A C A C
2 hstcl S CHStates A C S A
3 1 2 sylan2 S CHStates A C S A
4 normcl S A norm S A
5 3 4 syl S CHStates A C norm S A
6 5 sqge0d S CHStates A C 0 norm S A 2
7 hstcl S CHStates A C S A
8 normcl S A norm S A
9 7 8 syl S CHStates A C norm S A
10 9 resqcld S CHStates A C norm S A 2
11 5 resqcld S CHStates A C norm S A 2
12 10 11 addge01d S CHStates A C 0 norm S A 2 norm S A 2 norm S A 2 + norm S A 2
13 6 12 mpbid S CHStates A C norm S A 2 norm S A 2 + norm S A 2
14 hstnmoc S CHStates A C norm S A 2 + norm S A 2 = 1
15 sq1 1 2 = 1
16 14 15 eqtr4di S CHStates A C norm S A 2 + norm S A 2 = 1 2
17 13 16 breqtrd S CHStates A C norm S A 2 1 2
18 normge0 S A 0 norm S A
19 7 18 syl S CHStates A C 0 norm S A
20 1re 1
21 0le1 0 1
22 le2sq norm S A 0 norm S A 1 0 1 norm S A 1 norm S A 2 1 2
23 20 21 22 mpanr12 norm S A 0 norm S A norm S A 1 norm S A 2 1 2
24 9 19 23 syl2anc S CHStates A C norm S A 1 norm S A 2 1 2
25 17 24 mpbird S CHStates A C norm S A 1