Metamath Proof Explorer


Theorem hstoc

Description: Sum of a Hilbert-space-valued state of a lattice element and its orthocomplement. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstoc SCHStatesACSA+SA=S

Proof

Step Hyp Ref Expression
1 choccl ACAC
2 1 adantl SCHStatesACAC
3 chsh ACAS
4 shococss ASAA
5 3 4 syl ACAA
6 5 adantl SCHStatesACAA
7 2 6 jca SCHStatesACACAA
8 hstosum SCHStatesACACAASAA=SA+SA
9 7 8 mpdan SCHStatesACSAA=SA+SA
10 chjo ACAA=
11 10 fveq2d ACSAA=S
12 11 adantl SCHStatesACSAA=S
13 9 12 eqtr3d SCHStatesACSA+SA=S