Metamath Proof Explorer


Theorem hvmap1o

Description: The vector to functional map provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o.h H=LHypK
hvmap1o.o O=ocHKW
hvmap1o.u U=DVecHKW
hvmap1o.v V=BaseU
hvmap1o.z 0˙=0U
hvmap1o.f F=LFnlU
hvmap1o.l L=LKerU
hvmap1o.d D=LDualU
hvmap1o.q Q=0D
hvmap1o.c C=fF|OOLf=Lf
hvmap1o.m M=HVMapKW
hvmap1o.k φKHLWH
Assertion hvmap1o φM:V0˙1-1 ontoCQ

Proof

Step Hyp Ref Expression
1 hvmap1o.h H=LHypK
2 hvmap1o.o O=ocHKW
3 hvmap1o.u U=DVecHKW
4 hvmap1o.v V=BaseU
5 hvmap1o.z 0˙=0U
6 hvmap1o.f F=LFnlU
7 hvmap1o.l L=LKerU
8 hvmap1o.d D=LDualU
9 hvmap1o.q Q=0D
10 hvmap1o.c C=fF|OOLf=Lf
11 hvmap1o.m M=HVMapKW
12 hvmap1o.k φKHLWH
13 eqid +U=+U
14 eqid U=U
15 eqid ScalarU=ScalarU
16 eqid BaseScalarU=BaseScalarU
17 eqid xV0˙vVιkBaseScalarU|wOxv=w+UkUx=xV0˙vVιkBaseScalarU|wOxv=w+UkUx
18 1 2 3 4 13 14 15 16 5 6 7 8 9 10 17 12 lcf1o φxV0˙vVιkBaseScalarU|wOxv=w+UkUx:V0˙1-1 ontoCQ
19 1 3 2 4 13 14 5 15 16 11 12 hvmapfval φM=xV0˙vVιkBaseScalarU|wOxv=w+UkUx
20 19 f1oeq1d φM:V0˙1-1 ontoCQxV0˙vVιkBaseScalarU|wOxv=w+UkUx:V0˙1-1 ontoCQ
21 18 20 mpbird φM:V0˙1-1 ontoCQ