Metamath Proof Explorer


Theorem hvmul0

Description: Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hvmul0 AA0=0

Proof

Step Hyp Ref Expression
1 mul01 AA0=0
2 1 oveq1d AA00=00
3 ax-hv0cl 0
4 ax-hvmul0 000=0
5 3 4 ax-mp 00=0
6 2 5 eqtrdi AA00=0
7 0cn 0
8 ax-hvmulass A00A00=A00
9 7 3 8 mp3an23 AA00=A00
10 6 9 eqtr3d A0=A00
11 5 oveq2i A00=A0
12 10 11 eqtr2di AA0=0