Metamath Proof Explorer


Theorem hvmulcan

Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmulcan AA0BCAB=ACB=C

Proof

Step Hyp Ref Expression
1 df-ne A0¬A=0
2 biorf ¬A=0B-C=0A=0B-C=0
3 1 2 sylbi A0B-C=0A=0B-C=0
4 3 ad2antlr AA0BB-C=0A=0B-C=0
5 4 3adant3 AA0BCB-C=0A=0B-C=0
6 hvsubeq0 BCB-C=0B=C
7 6 3adant1 AA0BCB-C=0B=C
8 hvsubdistr1 ABCAB-C=AB-AC
9 8 eqeq1d ABCAB-C=0AB-AC=0
10 hvsubcl BCB-C
11 hvmul0or AB-CAB-C=0A=0B-C=0
12 10 11 sylan2 ABCAB-C=0A=0B-C=0
13 12 3impb ABCAB-C=0A=0B-C=0
14 hvmulcl ABAB
15 14 3adant3 ABCAB
16 hvmulcl ACAC
17 16 3adant2 ABCAC
18 hvsubeq0 ABACAB-AC=0AB=AC
19 15 17 18 syl2anc ABCAB-AC=0AB=AC
20 9 13 19 3bitr3d ABCA=0B-C=0AB=AC
21 20 3adant1r AA0BCA=0B-C=0AB=AC
22 5 7 21 3bitr3rd AA0BCAB=ACB=C