Metamath Proof Explorer


Theorem hvsubass

Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hvsubass ABCA-B-C=A-B+C

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1B-1B
3 1 2 mpan B-1B
4 hvaddsubass A-1BCA+-1B-C=A+-1B-C
5 3 4 syl3an2 ABCA+-1B-C=A+-1B-C
6 hvsubval ABA-B=A+-1B
7 6 3adant3 ABCA-B=A+-1B
8 7 oveq1d ABCA-B-C=A+-1B-C
9 simp1 ABCA
10 hvaddcl BCB+C
11 10 3adant1 ABCB+C
12 hvsubval AB+CA-B+C=A+-1B+C
13 9 11 12 syl2anc ABCA-B+C=A+-1B+C
14 hvsubval -1BC-1B-C=-1B+-1C
15 3 14 sylan BC-1B-C=-1B+-1C
16 15 3adant1 ABC-1B-C=-1B+-1C
17 ax-hvdistr1 1BC-1B+C=-1B+-1C
18 1 17 mp3an1 BC-1B+C=-1B+-1C
19 18 3adant1 ABC-1B+C=-1B+-1C
20 16 19 eqtr4d ABC-1B-C=-1B+C
21 20 oveq2d ABCA+-1B-C=A+-1B+C
22 13 21 eqtr4d ABCA-B+C=A+-1B-C
23 5 8 22 3eqtr4d ABCA-B-C=A-B+C