Metamath Proof Explorer


Theorem hvsubdistr1

Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubdistr1 ABCAB-C=AB-AC

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1C-1C
3 1 2 mpan C-1C
4 ax-hvdistr1 AB-1CAB+-1C=AB+A-1C
5 3 4 syl3an3 ABCAB+-1C=AB+A-1C
6 hvmulcom A1CA-1C=-1AC
7 1 6 mp3an2 ACA-1C=-1AC
8 7 oveq2d ACAB+A-1C=AB+-1AC
9 8 3adant2 ABCAB+A-1C=AB+-1AC
10 5 9 eqtrd ABCAB+-1C=AB+-1AC
11 hvsubval BCB-C=B+-1C
12 11 3adant1 ABCB-C=B+-1C
13 12 oveq2d ABCAB-C=AB+-1C
14 hvmulcl ABAB
15 14 3adant3 ABCAB
16 hvmulcl ACAC
17 16 3adant2 ABCAC
18 hvsubval ABACAB-AC=AB+-1AC
19 15 17 18 syl2anc ABCAB-AC=AB+-1AC
20 10 13 19 3eqtr4d ABCAB-C=AB-AC