Metamath Proof Explorer


Theorem hvsubdistr2

Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubdistr2 ABCABC=AC-BC

Proof

Step Hyp Ref Expression
1 hvmulcl ACAC
2 1 3adant2 ABCAC
3 hvmulcl BCBC
4 3 3adant1 ABCBC
5 hvsubval ACBCAC-BC=AC+-1BC
6 2 4 5 syl2anc ABCAC-BC=AC+-1BC
7 mulm1 B-1B=B
8 7 oveq1d B-1BC=BC
9 8 adantr BC-1BC=BC
10 neg1cn 1
11 ax-hvmulass 1BC-1BC=-1BC
12 10 11 mp3an1 BC-1BC=-1BC
13 9 12 eqtr3d BCBC=-1BC
14 13 3adant1 ABCBC=-1BC
15 14 oveq2d ABCAC+BC=AC+-1BC
16 negcl BB
17 ax-hvdistr2 ABCA+BC=AC+BC
18 16 17 syl3an2 ABCA+BC=AC+BC
19 negsub ABA+B=AB
20 19 3adant3 ABCA+B=AB
21 20 oveq1d ABCA+BC=ABC
22 18 21 eqtr3d ABCAC+BC=ABC
23 6 15 22 3eqtr2rd ABCABC=AC-BC