Metamath Proof Explorer


Theorem iblidicc

Description: The identity function is integrable on any closed interval. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses iblidicc.a φA
iblidicc.b φB
Assertion iblidicc φxABx𝐿1

Proof

Step Hyp Ref Expression
1 iblidicc.a φA
2 iblidicc.b φB
3 iccssre ABAB
4 1 2 3 syl2anc φAB
5 ax-resscn
6 4 5 sstrdi φAB
7 ssid
8 cncfmptid ABxABx:ABcn
9 6 7 8 sylancl φxABx:ABcn
10 cniccibl ABxABx:ABcnxABx𝐿1
11 1 2 9 10 syl3anc φxABx𝐿1