Metamath Proof Explorer


Theorem iccmbl

Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion iccmbl ABABdomvol

Proof

Step Hyp Ref Expression
1 iccssre ABAB
2 dfss4 ABAB=AB
3 1 2 sylib ABAB=AB
4 difreicc ABAB=−∞AB+∞
5 ioombl −∞Adomvol
6 ioombl B+∞domvol
7 unmbl −∞AdomvolB+∞domvol−∞AB+∞domvol
8 5 6 7 mp2an −∞AB+∞domvol
9 4 8 eqeltrdi ABABdomvol
10 cmmbl ABdomvolABdomvol
11 9 10 syl ABABdomvol
12 3 11 eqeltrrd ABABdomvol