Metamath Proof Explorer


Theorem icco1

Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Hypotheses icco1.1 φA
icco1.2 φxAB
icco1.3 φC
icco1.4 φM
icco1.5 φN
icco1.6 φxACxBMN
Assertion icco1 φxAB𝑂1

Proof

Step Hyp Ref Expression
1 icco1.1 φA
2 icco1.2 φxAB
3 icco1.3 φC
4 icco1.4 φM
5 icco1.5 φN
6 icco1.6 φxACxBMN
7 elicc2 MNBMNBMBBN
8 4 5 7 syl2anc φBMNBMBBN
9 8 adantr φxACxBMNBMBBN
10 6 9 mpbid φxACxBMBBN
11 10 simp3d φxACxBN
12 1 2 3 5 11 ello1d φxAB𝑂1
13 2 renegcld φxAB
14 4 renegcld φM
15 10 simp2d φxACxMB
16 4 adantr φxACxM
17 2 adantrr φxACxB
18 16 17 lenegd φxACxMBBM
19 15 18 mpbid φxACxBM
20 1 13 3 14 19 ello1d φxAB𝑂1
21 2 o1lo1 φxAB𝑂1xAB𝑂1xAB𝑂1
22 12 20 21 mpbir2and φxAB𝑂1