Metamath Proof Explorer


Theorem iccpartimp

Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020)

Ref Expression
Assertion iccpartimp MPRePartMI0..^MP*0MPI<PI+1

Proof

Step Hyp Ref Expression
1 iccpart MPRePartMP*0Mi0..^MPi<Pi+1
2 fveq2 i=IPi=PI
3 fvoveq1 i=IPi+1=PI+1
4 2 3 breq12d i=IPi<Pi+1PI<PI+1
5 4 rspccv i0..^MPi<Pi+1I0..^MPI<PI+1
6 5 adantl P*0Mi0..^MPi<Pi+1I0..^MPI<PI+1
7 simpl P*0Mi0..^MPi<Pi+1P*0M
8 6 7 jctild P*0Mi0..^MPi<Pi+1I0..^MP*0MPI<PI+1
9 1 8 syl6bi MPRePartMI0..^MP*0MPI<PI+1
10 9 3imp MPRePartMI0..^MP*0MPI<PI+1