Metamath Proof Explorer


Theorem ichnfim

Description: If in an interchangeability context x is not free in ph , the same holds for y . (Contributed by Wolf Lammen, 6-Aug-2023) (Revised by AV, 23-Sep-2023)

Ref Expression
Assertion ichnfim yxφxyφxyφ

Proof

Step Hyp Ref Expression
1 nfnf1 xxφ
2 1 nfal xyxφ
3 nfich1 xxyφ
4 2 3 nfan xyxφxyφ
5 dfich2 xyφabaxbyφbxayφ
6 ichnfimlem yxφaxbyφbyφ
7 ichnfimlem yxφbxayφayφ
8 6 7 bibi12d yxφaxbyφbxayφbyφayφ
9 bicom1 byφayφayφbyφ
10 8 9 syl6bi yxφaxbyφbxayφayφbyφ
11 10 2alimdv yxφabaxbyφbxayφabayφbyφ
12 5 11 biimtrid yxφxyφabayφbyφ
13 12 imp yxφxyφabayφbyφ
14 sbnf2 yφabayφbyφ
15 13 14 sylibr yxφxyφyφ
16 4 15 alrimi yxφxyφxyφ