Metamath Proof Explorer


Theorem icomnfinre

Description: A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis icomnfinre.1 φA*
Assertion icomnfinre φ−∞A=−∞A

Proof

Step Hyp Ref Expression
1 icomnfinre.1 φA*
2 mnfxr −∞*
3 2 a1i φx−∞A−∞*
4 1 adantr φx−∞AA*
5 elinel2 x−∞Ax
6 5 adantl φx−∞Ax
7 6 mnfltd φx−∞A−∞<x
8 elinel1 x−∞Ax−∞A
9 8 adantl φx−∞Ax−∞A
10 3 4 9 icoltubd φx−∞Ax<A
11 3 4 6 7 10 eliood φx−∞Ax−∞A
12 11 ssd φ−∞A−∞A
13 ioossico −∞A−∞A
14 ioossre −∞A
15 13 14 ssini −∞A−∞A
16 15 a1i φ−∞A−∞A
17 12 16 eqssd φ−∞A=−∞A