Metamath Proof Explorer


Theorem icoreval

Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020)

Ref Expression
Assertion icoreval ABAB=z|Azz<B

Proof

Step Hyp Ref Expression
1 ovres ABA.2B=AB
2 breq1 x=AxzAz
3 2 anbi1d x=Axzz<yAzz<y
4 3 rabbidv x=Az|xzz<y=z|Azz<y
5 breq2 y=Bz<yz<B
6 5 anbi2d y=BAzz<yAzz<B
7 6 rabbidv y=Bz|Azz<y=z|Azz<B
8 eqid .2=.2
9 8 icorempo .2=x,yz|xzz<y
10 reex V
11 10 rabex z|Azz<BV
12 4 7 9 11 ovmpo ABA.2B=z|Azz<B
13 1 12 eqtr3d ABAB=z|Azz<B