Metamath Proof Explorer


Theorem idepi

Description: An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses idmon.b B=BaseC
idmon.h H=HomC
idmon.i 1˙=IdC
idmon.c φCCat
idmon.x φXB
idepi.e E=EpiC
Assertion idepi φ1˙XXEX

Proof

Step Hyp Ref Expression
1 idmon.b B=BaseC
2 idmon.h H=HomC
3 idmon.i 1˙=IdC
4 idmon.c φCCat
5 idmon.x φXB
6 idepi.e E=EpiC
7 1 2 3 4 5 catidcl φ1˙XXHX
8 4 adantr φzBgXHzhXHzCCat
9 5 adantr φzBgXHzhXHzXB
10 eqid compC=compC
11 simpr1 φzBgXHzhXHzzB
12 simpr2 φzBgXHzhXHzgXHz
13 1 2 3 8 9 10 11 12 catrid φzBgXHzhXHzgXXcompCz1˙X=g
14 simpr3 φzBgXHzhXHzhXHz
15 1 2 3 8 9 10 11 14 catrid φzBgXHzhXHzhXXcompCz1˙X=h
16 13 15 eqeq12d φzBgXHzhXHzgXXcompCz1˙X=hXXcompCz1˙Xg=h
17 16 biimpd φzBgXHzhXHzgXXcompCz1˙X=hXXcompCz1˙Xg=h
18 17 ralrimivvva φzBgXHzhXHzgXXcompCz1˙X=hXXcompCz1˙Xg=h
19 1 2 10 6 4 5 5 isepi2 φ1˙XXEX1˙XXHXzBgXHzhXHzgXXcompCz1˙X=hXXcompCz1˙Xg=h
20 7 18 19 mpbir2and φ1˙XXEX