Metamath Proof Explorer


Theorem idrhm

Description: The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypothesis idrhm.b B=BaseR
Assertion idrhm RRingIBRRingHomR

Proof

Step Hyp Ref Expression
1 idrhm.b B=BaseR
2 id RRingRRing
3 ringgrp RRingRGrp
4 1 idghm RGrpIBRGrpHomR
5 3 4 syl RRingIBRGrpHomR
6 eqid mulGrpR=mulGrpR
7 6 ringmgp RRingmulGrpRMnd
8 6 1 mgpbas B=BasemulGrpR
9 8 idmhm mulGrpRMndIBmulGrpRMndHommulGrpR
10 7 9 syl RRingIBmulGrpRMndHommulGrpR
11 5 10 jca RRingIBRGrpHomRIBmulGrpRMndHommulGrpR
12 6 6 isrhm IBRRingHomRRRingRRingIBRGrpHomRIBmulGrpRMndHommulGrpR
13 2 2 11 12 syl21anbrc RRingIBRRingHomR