Metamath Proof Explorer


Theorem iihalf1

Description: Map the first half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iihalf1 X0122X01

Proof

Step Hyp Ref Expression
1 2re 2
2 remulcl 2X2X
3 1 2 mpan X2X
4 3 3ad2ant1 X0XX122X
5 0le2 02
6 mulge0 202X0X02X
7 1 5 6 mpanl12 X0X02X
8 7 3adant3 X0XX1202X
9 1re 1
10 2pos 0<2
11 1 10 pm3.2i 20<2
12 lemuldiv2 X120<22X1X12
13 9 11 12 mp3an23 X2X1X12
14 13 biimpar XX122X1
15 14 3adant2 X0XX122X1
16 4 8 15 3jca X0XX122X02X2X1
17 0re 0
18 halfre 12
19 17 18 elicc2i X012X0XX12
20 17 9 elicc2i 2X012X02X2X1
21 16 19 20 3imtr4i X0122X01