Metamath Proof Explorer


Theorem iineq0

Description: An indexed intersection is empty if one of the intersected classes is empty. (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Assertion iineq0 x A B = x A B =

Proof

Step Hyp Ref Expression
1 nel02 B = ¬ y B
2 1 reximi x A B = x A ¬ y B
3 rexnal x A ¬ y B ¬ x A y B
4 2 3 sylib x A B = ¬ x A y B
5 eliin y V y x A B x A y B
6 5 elv y x A B x A y B
7 4 6 sylnibr x A B = ¬ y x A B
8 7 eq0rdv x A B = x A B =