Metamath Proof Explorer


Theorem imasaddvallem

Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasaddf.f φF:VontoB
imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
imasaddflem.a φ˙=pVqVFpFqFp·˙q
Assertion imasaddvallem φXVYVFX˙FY=FX·˙Y

Proof

Step Hyp Ref Expression
1 imasaddf.f φF:VontoB
2 imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
3 imasaddflem.a φ˙=pVqVFpFqFp·˙q
4 df-ov FX˙FY=˙FXFY
5 1 2 3 imasaddfnlem φ˙FnB×B
6 fnfun ˙FnB×BFun˙
7 5 6 syl φFun˙
8 7 3ad2ant1 φXVYVFun˙
9 fveq2 p=XFp=FX
10 9 opeq1d p=XFpFY=FXFY
11 fvoveq1 p=XFp·˙Y=FX·˙Y
12 10 11 opeq12d p=XFpFYFp·˙Y=FXFYFX·˙Y
13 12 sneqd p=XFpFYFp·˙Y=FXFYFX·˙Y
14 13 ssiun2s XVFXFYFX·˙YpVFpFYFp·˙Y
15 14 3ad2ant2 φXVYVFXFYFX·˙YpVFpFYFp·˙Y
16 fveq2 q=YFq=FY
17 16 opeq2d q=YFpFq=FpFY
18 oveq2 q=Yp·˙q=p·˙Y
19 18 fveq2d q=YFp·˙q=Fp·˙Y
20 17 19 opeq12d q=YFpFqFp·˙q=FpFYFp·˙Y
21 20 sneqd q=YFpFqFp·˙q=FpFYFp·˙Y
22 21 ssiun2s YVFpFYFp·˙YqVFpFqFp·˙q
23 22 ralrimivw YVpVFpFYFp·˙YqVFpFqFp·˙q
24 ss2iun pVFpFYFp·˙YqVFpFqFp·˙qpVFpFYFp·˙YpVqVFpFqFp·˙q
25 23 24 syl YVpVFpFYFp·˙YpVqVFpFqFp·˙q
26 25 3ad2ant3 φXVYVpVFpFYFp·˙YpVqVFpFqFp·˙q
27 15 26 sstrd φXVYVFXFYFX·˙YpVqVFpFqFp·˙q
28 3 3ad2ant1 φXVYV˙=pVqVFpFqFp·˙q
29 27 28 sseqtrrd φXVYVFXFYFX·˙Y˙
30 opex FXFYFX·˙YV
31 30 snss FXFYFX·˙Y˙FXFYFX·˙Y˙
32 29 31 sylibr φXVYVFXFYFX·˙Y˙
33 funopfv Fun˙FXFYFX·˙Y˙˙FXFY=FX·˙Y
34 8 32 33 sylc φXVYV˙FXFY=FX·˙Y
35 4 34 eqtrid φXVYVFX˙FY=FX·˙Y