Metamath Proof Explorer


Theorem imasbas

Description: The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
Assertion imasbas φB=BaseU

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 eqid +R=+R
6 eqid R=R
7 eqid ScalarR=ScalarR
8 eqid BaseScalarR=BaseScalarR
9 eqid R=R
10 eqid 𝑖R=𝑖R
11 eqid TopOpenR=TopOpenR
12 eqid distR=distR
13 eqid R=R
14 eqidd φpVqVFpFqFp+Rq=pVqVFpFqFp+Rq
15 eqidd φpVqVFpFqFpRq=pVqVFpFqFpRq
16 eqidd φqVpBaseScalarR,xFqFpRq=qVpBaseScalarR,xFqFpRq
17 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
18 eqidd φTopOpenRqTopF=TopOpenRqTopF
19 eqidd φxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
20 eqidd φFRF-1=FRF-1
21 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 4 imasval φU=BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
22 eqid BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<=BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
23 22 imasvalstr BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<Struct112
24 baseid Base=SlotBasendx
25 snsstp1 BasendxBBasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRq
26 ssun1 BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqBasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
27 25 26 sstri BasendxBBasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
28 ssun1 BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
29 27 28 sstri BasendxBBasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
30 fvex BaseRV
31 2 30 eqeltrdi φVV
32 focdmex VVF:VontoBBV
33 31 3 32 sylc φBV
34 eqid BaseU=BaseU
35 21 23 24 29 33 34 strfv3 φBaseU=B
36 35 eqcomd φB=BaseU