Metamath Proof Explorer


Theorem imasplusg

Description: The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imasplusg.p + ˙ = + R
imasplusg.a ˙ = + U
Assertion imasplusg φ ˙ = p V q V F p F q F p + ˙ q

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imasplusg.p + ˙ = + R
6 imasplusg.a ˙ = + U
7 eqid R = R
8 eqid Scalar R = Scalar R
9 eqid Base Scalar R = Base Scalar R
10 eqid R = R
11 eqid 𝑖 R = 𝑖 R
12 eqid TopOpen R = TopOpen R
13 eqid dist R = dist R
14 eqid R = R
15 eqidd φ p V q V F p F q F p + ˙ q = p V q V F p F q F p + ˙ q
16 eqidd φ p V q V F p F q F p R q = p V q V F p F q F p R q
17 eqidd φ q V p Base Scalar R , x F q F p R q = q V p Base Scalar R , x F q F p R q
18 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
19 eqidd φ TopOpen R qTop F = TopOpen R qTop F
20 eqid dist U = dist U
21 1 2 3 4 13 20 imasds φ dist U = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
22 eqidd φ F R F -1 = F R F -1
23 1 2 5 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 3 4 imasval φ U = Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
24 eqid Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
25 24 imasvalstr Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U Struct 1 12
26 plusgid + 𝑔 = Slot + ndx
27 snsstp2 + ndx p V q V F p F q F p + ˙ q Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q
28 ssun1 Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
29 27 28 sstri + ndx p V q V F p F q F p + ˙ q Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
30 ssun1 Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
31 29 30 sstri + ndx p V q V F p F q F p + ˙ q Base ndx B + ndx p V q V F p F q F p + ˙ q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
32 fvex Base R V
33 2 32 eqeltrdi φ V V
34 snex F p F q F p + ˙ q V
35 34 rgenw q V F p F q F p + ˙ q V
36 iunexg V V q V F p F q F p + ˙ q V q V F p F q F p + ˙ q V
37 33 35 36 sylancl φ q V F p F q F p + ˙ q V
38 37 ralrimivw φ p V q V F p F q F p + ˙ q V
39 iunexg V V p V q V F p F q F p + ˙ q V p V q V F p F q F p + ˙ q V
40 33 38 39 syl2anc φ p V q V F p F q F p + ˙ q V
41 23 25 26 31 40 6 strfv3 φ ˙ = p V q V F p F q F p + ˙ q