Metamath Proof Explorer


Theorem imasplusg

Description: The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imasplusg.p +˙=+R
imasplusg.a ˙=+U
Assertion imasplusg φ˙=pVqVFpFqFp+˙q

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imasplusg.p +˙=+R
6 imasplusg.a ˙=+U
7 eqid R=R
8 eqid ScalarR=ScalarR
9 eqid BaseScalarR=BaseScalarR
10 eqid R=R
11 eqid 𝑖R=𝑖R
12 eqid TopOpenR=TopOpenR
13 eqid distR=distR
14 eqid R=R
15 eqidd φpVqVFpFqFp+˙q=pVqVFpFqFp+˙q
16 eqidd φpVqVFpFqFpRq=pVqVFpFqFpRq
17 eqidd φqVpBaseScalarR,xFqFpRq=qVpBaseScalarR,xFqFpRq
18 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
19 eqidd φTopOpenRqTopF=TopOpenRqTopF
20 eqid distU=distU
21 1 2 3 4 13 20 imasds φdistU=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
22 eqidd φFRF-1=FRF-1
23 1 2 5 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 3 4 imasval φU=BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
24 eqid BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU=BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
25 24 imasvalstr BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistUStruct112
26 plusgid +𝑔=Slot+ndx
27 snsstp2 +ndxpVqVFpFqFp+˙qBasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRq
28 ssun1 BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqBasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
29 27 28 sstri +ndxpVqVFpFqFp+˙qBasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
30 ssun1 BasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
31 29 30 sstri +ndxpVqVFpFqFp+˙qBasendxB+ndxpVqVFpFqFp+˙qndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
32 fvex BaseRV
33 2 32 eqeltrdi φVV
34 snex FpFqFp+˙qV
35 34 rgenw qVFpFqFp+˙qV
36 iunexg VVqVFpFqFp+˙qVqVFpFqFp+˙qV
37 33 35 36 sylancl φqVFpFqFp+˙qV
38 37 ralrimivw φpVqVFpFqFp+˙qV
39 iunexg VVpVqVFpFqFp+˙qVpVqVFpFqFp+˙qV
40 33 38 39 syl2anc φpVqVFpFqFp+˙qV
41 23 25 26 31 40 6 strfv3 φ˙=pVqVFpFqFp+˙q