Metamath Proof Explorer


Theorem imasringf1

Description: The image of a ring under an injection is a ring ( imasmndf1 analog). (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses imasringf1.u U=F𝑠R
imasringf1.v V=BaseR
Assertion imasringf1 F:V1-1BRRingURing

Proof

Step Hyp Ref Expression
1 imasringf1.u U=F𝑠R
2 imasringf1.v V=BaseR
3 1 a1i F:V1-1BRRingU=F𝑠R
4 2 a1i F:V1-1BRRingV=BaseR
5 eqid +R=+R
6 eqid R=R
7 eqid 1R=1R
8 f1f1orn F:V1-1BF:V1-1 ontoranF
9 8 adantr F:V1-1BRRingF:V1-1 ontoranF
10 f1ofo F:V1-1 ontoranFF:VontoranF
11 9 10 syl F:V1-1BRRingF:VontoranF
12 9 f1ocpbl F:V1-1BRRingaVbVpVqVFa=FpFb=FqFa+Rb=Fp+Rq
13 9 f1ocpbl F:V1-1BRRingaVbVpVqVFa=FpFb=FqFaRb=FpRq
14 simpr F:V1-1BRRingRRing
15 3 4 5 6 7 11 12 13 14 imasring F:V1-1BRRingURingF1R=1U
16 15 simpld F:V1-1BRRingURing