Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008) (Proof shortened by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indishmph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren | |
|
2 | f1of | |
|
3 | f1odm | |
|
4 | vex | |
|
5 | 4 | dmex | |
6 | 3 5 | eqeltrrdi | |
7 | f1ofo | |
|
8 | focdmex | |
|
9 | 6 7 8 | sylc | |
10 | 9 6 | elmapd | |
11 | 2 10 | mpbird | |
12 | indistopon | |
|
13 | 6 12 | syl | |
14 | cnindis | |
|
15 | 13 9 14 | syl2anc | |
16 | 11 15 | eleqtrrd | |
17 | f1ocnv | |
|
18 | f1of | |
|
19 | 17 18 | syl | |
20 | 6 9 | elmapd | |
21 | 19 20 | mpbird | |
22 | indistopon | |
|
23 | 9 22 | syl | |
24 | cnindis | |
|
25 | 23 6 24 | syl2anc | |
26 | 21 25 | eleqtrrd | |
27 | ishmeo | |
|
28 | 16 26 27 | sylanbrc | |
29 | hmphi | |
|
30 | 28 29 | syl | |
31 | 30 | exlimiv | |
32 | 1 31 | sylbi | |