Metamath Proof Explorer


Theorem indishmph

Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008) (Proof shortened by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion indishmph ABAB

Proof

Step Hyp Ref Expression
1 bren ABff:A1-1 ontoB
2 f1of f:A1-1 ontoBf:AB
3 f1odm f:A1-1 ontoBdomf=A
4 vex fV
5 4 dmex domfV
6 3 5 eqeltrrdi f:A1-1 ontoBAV
7 f1ofo f:A1-1 ontoBf:AontoB
8 focdmex AVf:AontoBBV
9 6 7 8 sylc f:A1-1 ontoBBV
10 9 6 elmapd f:A1-1 ontoBfBAf:AB
11 2 10 mpbird f:A1-1 ontoBfBA
12 indistopon AVATopOnA
13 6 12 syl f:A1-1 ontoBATopOnA
14 cnindis ATopOnABVACnB=BA
15 13 9 14 syl2anc f:A1-1 ontoBACnB=BA
16 11 15 eleqtrrd f:A1-1 ontoBfACnB
17 f1ocnv f:A1-1 ontoBf-1:B1-1 ontoA
18 f1of f-1:B1-1 ontoAf-1:BA
19 17 18 syl f:A1-1 ontoBf-1:BA
20 6 9 elmapd f:A1-1 ontoBf-1ABf-1:BA
21 19 20 mpbird f:A1-1 ontoBf-1AB
22 indistopon BVBTopOnB
23 9 22 syl f:A1-1 ontoBBTopOnB
24 cnindis BTopOnBAVBCnA=AB
25 23 6 24 syl2anc f:A1-1 ontoBBCnA=AB
26 21 25 eleqtrrd f:A1-1 ontoBf-1BCnA
27 ishmeo fAHomeoBfACnBf-1BCnA
28 16 26 27 sylanbrc f:A1-1 ontoBfAHomeoB
29 hmphi fAHomeoBAB
30 28 29 syl f:A1-1 ontoBAB
31 30 exlimiv ff:A1-1 ontoBAB
32 1 31 sylbi ABAB