Metamath Proof Explorer


Theorem indthincALT

Description: An alternate proof for indthinc assuming more axioms including ax-pow and ax-un . (Contributed by Zhi Wang, 17-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses indthinc.b φB=BaseC
indthinc.h φB×B×1𝑜=HomC
indthinc.o φ=compC
indthinc.c φCV
Assertion indthincALT Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 indthinc.b φB=BaseC
2 indthinc.h φB×B×1𝑜=HomC
3 indthinc.o φ=compC
4 indthinc.c φCV
5 1oex 1𝑜V
6 5 ovconst2 xByBxB×B×1𝑜y=1𝑜
7 domrefg 1𝑜V1𝑜1𝑜
8 5 7 ax-mp 1𝑜1𝑜
9 6 8 eqbrtrdi xByBxB×B×1𝑜y1𝑜
10 modom2 *ffxB×B×1𝑜yxB×B×1𝑜y1𝑜
11 9 10 sylibr xByB*ffxB×B×1𝑜y
12 11 adantl φxByB*ffxB×B×1𝑜y
13 biid xByBzBfxB×B×1𝑜ygyB×B×1𝑜zxByBzBfxB×B×1𝑜ygyB×B×1𝑜z
14 id yByB
15 14 ancli yByByB
16 5 ovconst2 yByByB×B×1𝑜y=1𝑜
17 0lt1o 1𝑜
18 eleq2 yB×B×1𝑜y=1𝑜yB×B×1𝑜y1𝑜
19 17 18 mpbiri yB×B×1𝑜y=1𝑜yB×B×1𝑜y
20 15 16 19 3syl yByB×B×1𝑜y
21 20 adantl φyByB×B×1𝑜y
22 17 a1i xByBzB1𝑜
23 0ov xyz=
24 23 oveqi gxyzf=gf
25 0ov gf=
26 24 25 eqtri gxyzf=
27 26 a1i xByBzBgxyzf=
28 5 ovconst2 xBzBxB×B×1𝑜z=1𝑜
29 28 3adant2 xByBzBxB×B×1𝑜z=1𝑜
30 22 27 29 3eltr4d xByBzBgxyzfxB×B×1𝑜z
31 30 ad2antrl φxByBzBfxB×B×1𝑜ygyB×B×1𝑜zgxyzfxB×B×1𝑜z
32 1 2 12 3 4 13 21 31 isthincd2 Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-