Description: An alternate proof for indthinc assuming more axioms including ax-pow and ax-un . (Contributed by Zhi Wang, 17-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indthinc.b | |
|
indthinc.h | |
||
indthinc.o | |
||
indthinc.c | |
||
Assertion | indthincALT | Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indthinc.b | |
|
2 | indthinc.h | |
|
3 | indthinc.o | |
|
4 | indthinc.c | |
|
5 | 1oex | |
|
6 | 5 | ovconst2 | |
7 | domrefg | |
|
8 | 5 7 | ax-mp | |
9 | 6 8 | eqbrtrdi | |
10 | modom2 | |
|
11 | 9 10 | sylibr | |
12 | 11 | adantl | |
13 | biid | |
|
14 | id | |
|
15 | 14 | ancli | |
16 | 5 | ovconst2 | |
17 | 0lt1o | |
|
18 | eleq2 | |
|
19 | 17 18 | mpbiri | |
20 | 15 16 19 | 3syl | |
21 | 20 | adantl | |
22 | 17 | a1i | |
23 | 0ov | |
|
24 | 23 | oveqi | |
25 | 0ov | |
|
26 | 24 25 | eqtri | |
27 | 26 | a1i | |
28 | 5 | ovconst2 | |
29 | 28 | 3adant2 | |
30 | 22 27 29 | 3eltr4d | |
31 | 30 | ad2antrl | |
32 | 1 2 12 3 4 13 21 31 | isthincd2 | Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |- |