Metamath Proof Explorer


Theorem infdiffi

Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infdiffi ωABFinABA

Proof

Step Hyp Ref Expression
1 difeq2 x=Ax=A
2 dif0 A=A
3 1 2 eqtrdi x=Ax=A
4 3 breq1d x=AxAAA
5 4 imbi2d x=ωAAxAωAAA
6 difeq2 x=yAx=Ay
7 6 breq1d x=yAxAAyA
8 7 imbi2d x=yωAAxAωAAyA
9 difeq2 x=yzAx=Ayz
10 difun1 Ayz=Ayz
11 9 10 eqtrdi x=yzAx=Ayz
12 11 breq1d x=yzAxAAyzA
13 12 imbi2d x=yzωAAxAωAAyzA
14 difeq2 x=BAx=AB
15 14 breq1d x=BAxAABA
16 15 imbi2d x=BωAAxAωAABA
17 reldom Rel
18 17 brrelex2i ωAAV
19 enrefg AVAA
20 18 19 syl ωAAA
21 domen2 AyAωAyωA
22 21 biimparc ωAAyAωAy
23 infdifsn ωAyAyzAy
24 22 23 syl ωAAyAAyzAy
25 entr AyzAyAyAAyzA
26 24 25 sylancom ωAAyAAyzA
27 26 ex ωAAyAAyzA
28 27 a2i ωAAyAωAAyzA
29 28 a1i yFinωAAyAωAAyzA
30 5 8 13 16 20 29 findcard2 BFinωAABA
31 30 impcom ωABFinABA