Metamath Proof Explorer


Theorem infeq3

Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Assertion infeq3 R=SsupABR=supABS

Proof

Step Hyp Ref Expression
1 cnveq R=SR-1=S-1
2 supeq3 R-1=S-1supABR-1=supABS-1
3 1 2 syl R=SsupABR-1=supABS-1
4 df-inf supABR=supABR-1
5 df-inf supABS=supABS-1
6 3 4 5 3eqtr4g R=SsupABR=supABS