Metamath Proof Explorer


Theorem infiso

Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020)

Ref Expression
Hypotheses infiso.1 φFIsomR,SAB
infiso.2 φCA
infiso.3 φxAyC¬yRxyAxRyzCzRy
infiso.4 φROrA
Assertion infiso φsupFCBS=FsupCAR

Proof

Step Hyp Ref Expression
1 infiso.1 φFIsomR,SAB
2 infiso.2 φCA
3 infiso.3 φxAyC¬yRxyAxRyzCzRy
4 infiso.4 φROrA
5 isocnv2 FIsomR,SABFIsomR-1,S-1AB
6 1 5 sylib φFIsomR-1,S-1AB
7 4 3 infcllem φxAyC¬xR-1yyAyR-1xzCyR-1z
8 cnvso ROrAR-1OrA
9 4 8 sylib φR-1OrA
10 6 2 7 9 supiso φsupFCBS-1=FsupCAR-1
11 df-inf supFCBS=supFCBS-1
12 df-inf supCAR=supCAR-1
13 12 fveq2i FsupCAR=FsupCAR-1
14 10 11 13 3eqtr4g φsupFCBS=FsupCAR