Metamath Proof Explorer


Theorem infpss

Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infpss ωAxxAxA

Proof

Step Hyp Ref Expression
1 infn0 ωAA
2 n0 AyyA
3 1 2 sylib ωAyyA
4 reldom Rel
5 4 brrelex2i ωAAV
6 5 difexd ωAAyV
7 6 adantr ωAyAAyV
8 simpr ωAyAyA
9 difsnpss yAAyA
10 8 9 sylib ωAyAAyA
11 infdifsn ωAAyA
12 11 adantr ωAyAAyA
13 10 12 jca ωAyAAyAAyA
14 psseq1 x=AyxAAyA
15 breq1 x=AyxAAyA
16 14 15 anbi12d x=AyxAxAAyAAyA
17 7 13 16 spcedv ωAyAxxAxA
18 3 17 exlimddv ωAxxAxA