Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infpss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infn0 | |
|
2 | n0 | |
|
3 | 1 2 | sylib | |
4 | reldom | |
|
5 | 4 | brrelex2i | |
6 | 5 | difexd | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | difsnpss | |
|
10 | 8 9 | sylib | |
11 | infdifsn | |
|
12 | 11 | adantr | |
13 | 10 12 | jca | |
14 | psseq1 | |
|
15 | breq1 | |
|
16 | 14 15 | anbi12d | |
17 | 7 13 16 | spcedv | |
18 | 3 17 | exlimddv | |