Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infpssr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel | |
|
2 | 1 | adantr | |
3 | eldif | |
|
4 | pssss | |
|
5 | bren | |
|
6 | simpr | |
|
7 | f1ofo | |
|
8 | forn | |
|
9 | 6 7 8 | 3syl | |
10 | vex | |
|
11 | 10 | rnex | |
12 | 9 11 | eqeltrrdi | |
13 | simplr | |
|
14 | simpll | |
|
15 | eqid | |
|
16 | 13 6 14 15 | infpssrlem5 | |
17 | 12 16 | mpd | |
18 | 17 | ex | |
19 | 18 | exlimdv | |
20 | 5 19 | biimtrid | |
21 | 20 | ex | |
22 | 4 21 | syl5 | |
23 | 22 | impd | |
24 | 3 23 | sylbir | |
25 | 24 | exlimiv | |
26 | 2 25 | mpcom | |