Metamath Proof Explorer


Theorem infxrbnd2

Description: The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion infxrbnd2 A*xyAxy−∞<supA*<

Proof

Step Hyp Ref Expression
1 ralnex x¬yAxy¬xyAxy
2 ssel2 A*yAy*
3 rexr xx*
4 simpl y*x*y*
5 simpr y*x*x*
6 4 5 xrltnled y*x*y<x¬xy
7 2 3 6 syl2an A*yAxy<x¬xy
8 7 an32s A*xyAy<x¬xy
9 8 rexbidva A*xyAy<xyA¬xy
10 rexnal yA¬xy¬yAxy
11 9 10 bitr2di A*x¬yAxyyAy<x
12 11 ralbidva A*x¬yAxyxyAy<x
13 1 12 bitr3id A*¬xyAxyxyAy<x
14 infxrunb2 A*xyAy<xsupA*<=−∞
15 infxrcl A*supA*<*
16 ngtmnft supA*<*supA*<=−∞¬−∞<supA*<
17 15 16 syl A*supA*<=−∞¬−∞<supA*<
18 13 14 17 3bitrd A*¬xyAxy¬−∞<supA*<
19 18 con4bid A*xyAxy−∞<supA*<