| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infleinflem1.a |
|
| 2 |
|
infleinflem1.b |
|
| 3 |
|
infleinflem1.w |
|
| 4 |
|
infleinflem1.x |
|
| 5 |
|
infleinflem1.i |
|
| 6 |
|
infleinflem1.z |
|
| 7 |
|
infleinflem1.l |
|
| 8 |
|
infxrcl |
|
| 9 |
1 8
|
syl |
|
| 10 |
|
id |
|
| 11 |
9 10
|
syl |
|
| 12 |
1 6
|
sseldd |
|
| 13 |
|
infxrcl |
|
| 14 |
2 13
|
syl |
|
| 15 |
|
rpxr |
|
| 16 |
3 15
|
syl |
|
| 17 |
14 16
|
xaddcld |
|
| 18 |
|
infxrlb |
|
| 19 |
1 6 18
|
syl2anc |
|
| 20 |
2
|
sselda |
|
| 21 |
4 20
|
mpdan |
|
| 22 |
3
|
rpred |
|
| 23 |
22
|
rehalfcld |
|
| 24 |
23
|
rexrd |
|
| 25 |
21 24
|
xaddcld |
|
| 26 |
|
pnfge |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
adantl |
|
| 31 |
|
rpre |
|
| 32 |
|
renemnf |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
xaddpnf2 |
|
| 35 |
15 33 34
|
syl2anc |
|
| 36 |
3 35
|
syl |
|
| 37 |
36
|
adantr |
|
| 38 |
30 37
|
eqtr2d |
|
| 39 |
28 38
|
breqtrd |
|
| 40 |
2 4
|
sseldd |
|
| 41 |
14 24
|
xaddcld |
|
| 42 |
|
rphalfcl |
|
| 43 |
3 42
|
syl |
|
| 44 |
43
|
rpxrd |
|
| 45 |
40 41 44 5
|
xleadd1d |
|
| 46 |
45
|
adantr |
|
| 47 |
14
|
adantr |
|
| 48 |
|
neqne |
|
| 49 |
48
|
adantl |
|
| 50 |
44
|
adantr |
|
| 51 |
3
|
adantr |
|
| 52 |
|
rpre |
|
| 53 |
|
renepnf |
|
| 54 |
51 42 52 53
|
4syl |
|
| 55 |
|
xaddass2 |
|
| 56 |
47 49 50 54 50 54 55
|
syl222anc |
|
| 57 |
|
rehalfcl |
|
| 58 |
57 57
|
rexaddd |
|
| 59 |
|
recn |
|
| 60 |
|
2halves |
|
| 61 |
59 60
|
syl |
|
| 62 |
58 61
|
eqtrd |
|
| 63 |
62
|
oveq2d |
|
| 64 |
51 31 63
|
3syl |
|
| 65 |
56 64
|
eqtrd |
|
| 66 |
46 65
|
breqtrd |
|
| 67 |
39 66
|
pm2.61dan |
|
| 68 |
12 25 17 7 67
|
xrletrd |
|
| 69 |
11 12 17 19 68
|
xrletrd |
|