| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infleinflem1.a |
|- ( ph -> A C_ RR* ) |
| 2 |
|
infleinflem1.b |
|- ( ph -> B C_ RR* ) |
| 3 |
|
infleinflem1.w |
|- ( ph -> W e. RR+ ) |
| 4 |
|
infleinflem1.x |
|- ( ph -> X e. B ) |
| 5 |
|
infleinflem1.i |
|- ( ph -> X <_ ( inf ( B , RR* , < ) +e ( W / 2 ) ) ) |
| 6 |
|
infleinflem1.z |
|- ( ph -> Z e. A ) |
| 7 |
|
infleinflem1.l |
|- ( ph -> Z <_ ( X +e ( W / 2 ) ) ) |
| 8 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
| 9 |
1 8
|
syl |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
| 10 |
|
id |
|- ( inf ( A , RR* , < ) e. RR* -> inf ( A , RR* , < ) e. RR* ) |
| 11 |
9 10
|
syl |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
| 12 |
1 6
|
sseldd |
|- ( ph -> Z e. RR* ) |
| 13 |
|
infxrcl |
|- ( B C_ RR* -> inf ( B , RR* , < ) e. RR* ) |
| 14 |
2 13
|
syl |
|- ( ph -> inf ( B , RR* , < ) e. RR* ) |
| 15 |
|
rpxr |
|- ( W e. RR+ -> W e. RR* ) |
| 16 |
3 15
|
syl |
|- ( ph -> W e. RR* ) |
| 17 |
14 16
|
xaddcld |
|- ( ph -> ( inf ( B , RR* , < ) +e W ) e. RR* ) |
| 18 |
|
infxrlb |
|- ( ( A C_ RR* /\ Z e. A ) -> inf ( A , RR* , < ) <_ Z ) |
| 19 |
1 6 18
|
syl2anc |
|- ( ph -> inf ( A , RR* , < ) <_ Z ) |
| 20 |
2
|
sselda |
|- ( ( ph /\ X e. B ) -> X e. RR* ) |
| 21 |
4 20
|
mpdan |
|- ( ph -> X e. RR* ) |
| 22 |
3
|
rpred |
|- ( ph -> W e. RR ) |
| 23 |
22
|
rehalfcld |
|- ( ph -> ( W / 2 ) e. RR ) |
| 24 |
23
|
rexrd |
|- ( ph -> ( W / 2 ) e. RR* ) |
| 25 |
21 24
|
xaddcld |
|- ( ph -> ( X +e ( W / 2 ) ) e. RR* ) |
| 26 |
|
pnfge |
|- ( ( X +e ( W / 2 ) ) e. RR* -> ( X +e ( W / 2 ) ) <_ +oo ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( X +e ( W / 2 ) ) <_ +oo ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = +oo ) -> ( X +e ( W / 2 ) ) <_ +oo ) |
| 29 |
|
oveq1 |
|- ( inf ( B , RR* , < ) = +oo -> ( inf ( B , RR* , < ) +e W ) = ( +oo +e W ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ inf ( B , RR* , < ) = +oo ) -> ( inf ( B , RR* , < ) +e W ) = ( +oo +e W ) ) |
| 31 |
|
rpre |
|- ( W e. RR+ -> W e. RR ) |
| 32 |
|
renemnf |
|- ( W e. RR -> W =/= -oo ) |
| 33 |
31 32
|
syl |
|- ( W e. RR+ -> W =/= -oo ) |
| 34 |
|
xaddpnf2 |
|- ( ( W e. RR* /\ W =/= -oo ) -> ( +oo +e W ) = +oo ) |
| 35 |
15 33 34
|
syl2anc |
|- ( W e. RR+ -> ( +oo +e W ) = +oo ) |
| 36 |
3 35
|
syl |
|- ( ph -> ( +oo +e W ) = +oo ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = +oo ) -> ( +oo +e W ) = +oo ) |
| 38 |
30 37
|
eqtr2d |
|- ( ( ph /\ inf ( B , RR* , < ) = +oo ) -> +oo = ( inf ( B , RR* , < ) +e W ) ) |
| 39 |
28 38
|
breqtrd |
|- ( ( ph /\ inf ( B , RR* , < ) = +oo ) -> ( X +e ( W / 2 ) ) <_ ( inf ( B , RR* , < ) +e W ) ) |
| 40 |
2 4
|
sseldd |
|- ( ph -> X e. RR* ) |
| 41 |
14 24
|
xaddcld |
|- ( ph -> ( inf ( B , RR* , < ) +e ( W / 2 ) ) e. RR* ) |
| 42 |
|
rphalfcl |
|- ( W e. RR+ -> ( W / 2 ) e. RR+ ) |
| 43 |
3 42
|
syl |
|- ( ph -> ( W / 2 ) e. RR+ ) |
| 44 |
43
|
rpxrd |
|- ( ph -> ( W / 2 ) e. RR* ) |
| 45 |
40 41 44 5
|
xleadd1d |
|- ( ph -> ( X +e ( W / 2 ) ) <_ ( ( inf ( B , RR* , < ) +e ( W / 2 ) ) +e ( W / 2 ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( X +e ( W / 2 ) ) <_ ( ( inf ( B , RR* , < ) +e ( W / 2 ) ) +e ( W / 2 ) ) ) |
| 47 |
14
|
adantr |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> inf ( B , RR* , < ) e. RR* ) |
| 48 |
|
neqne |
|- ( -. inf ( B , RR* , < ) = +oo -> inf ( B , RR* , < ) =/= +oo ) |
| 49 |
48
|
adantl |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> inf ( B , RR* , < ) =/= +oo ) |
| 50 |
44
|
adantr |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( W / 2 ) e. RR* ) |
| 51 |
3
|
adantr |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> W e. RR+ ) |
| 52 |
|
rpre |
|- ( ( W / 2 ) e. RR+ -> ( W / 2 ) e. RR ) |
| 53 |
|
renepnf |
|- ( ( W / 2 ) e. RR -> ( W / 2 ) =/= +oo ) |
| 54 |
51 42 52 53
|
4syl |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( W / 2 ) =/= +oo ) |
| 55 |
|
xaddass2 |
|- ( ( ( inf ( B , RR* , < ) e. RR* /\ inf ( B , RR* , < ) =/= +oo ) /\ ( ( W / 2 ) e. RR* /\ ( W / 2 ) =/= +oo ) /\ ( ( W / 2 ) e. RR* /\ ( W / 2 ) =/= +oo ) ) -> ( ( inf ( B , RR* , < ) +e ( W / 2 ) ) +e ( W / 2 ) ) = ( inf ( B , RR* , < ) +e ( ( W / 2 ) +e ( W / 2 ) ) ) ) |
| 56 |
47 49 50 54 50 54 55
|
syl222anc |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( ( inf ( B , RR* , < ) +e ( W / 2 ) ) +e ( W / 2 ) ) = ( inf ( B , RR* , < ) +e ( ( W / 2 ) +e ( W / 2 ) ) ) ) |
| 57 |
|
rehalfcl |
|- ( W e. RR -> ( W / 2 ) e. RR ) |
| 58 |
57 57
|
rexaddd |
|- ( W e. RR -> ( ( W / 2 ) +e ( W / 2 ) ) = ( ( W / 2 ) + ( W / 2 ) ) ) |
| 59 |
|
recn |
|- ( W e. RR -> W e. CC ) |
| 60 |
|
2halves |
|- ( W e. CC -> ( ( W / 2 ) + ( W / 2 ) ) = W ) |
| 61 |
59 60
|
syl |
|- ( W e. RR -> ( ( W / 2 ) + ( W / 2 ) ) = W ) |
| 62 |
58 61
|
eqtrd |
|- ( W e. RR -> ( ( W / 2 ) +e ( W / 2 ) ) = W ) |
| 63 |
62
|
oveq2d |
|- ( W e. RR -> ( inf ( B , RR* , < ) +e ( ( W / 2 ) +e ( W / 2 ) ) ) = ( inf ( B , RR* , < ) +e W ) ) |
| 64 |
51 31 63
|
3syl |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( inf ( B , RR* , < ) +e ( ( W / 2 ) +e ( W / 2 ) ) ) = ( inf ( B , RR* , < ) +e W ) ) |
| 65 |
56 64
|
eqtrd |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( ( inf ( B , RR* , < ) +e ( W / 2 ) ) +e ( W / 2 ) ) = ( inf ( B , RR* , < ) +e W ) ) |
| 66 |
46 65
|
breqtrd |
|- ( ( ph /\ -. inf ( B , RR* , < ) = +oo ) -> ( X +e ( W / 2 ) ) <_ ( inf ( B , RR* , < ) +e W ) ) |
| 67 |
39 66
|
pm2.61dan |
|- ( ph -> ( X +e ( W / 2 ) ) <_ ( inf ( B , RR* , < ) +e W ) ) |
| 68 |
12 25 17 7 67
|
xrletrd |
|- ( ph -> Z <_ ( inf ( B , RR* , < ) +e W ) ) |
| 69 |
11 12 17 19 68
|
xrletrd |
|- ( ph -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e W ) ) |