| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infleinf.a |
|- ( ph -> A C_ RR* ) |
| 2 |
|
infleinf.b |
|- ( ph -> B C_ RR* ) |
| 3 |
|
infleinf.c |
|- ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) |
| 4 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
| 5 |
1 4
|
syl |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
| 6 |
|
pnfge |
|- ( inf ( A , RR* , < ) e. RR* -> inf ( A , RR* , < ) <_ +oo ) |
| 7 |
5 6
|
syl |
|- ( ph -> inf ( A , RR* , < ) <_ +oo ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ B = (/) ) -> inf ( A , RR* , < ) <_ +oo ) |
| 9 |
|
infeq1 |
|- ( B = (/) -> inf ( B , RR* , < ) = inf ( (/) , RR* , < ) ) |
| 10 |
|
xrinf0 |
|- inf ( (/) , RR* , < ) = +oo |
| 11 |
10
|
a1i |
|- ( B = (/) -> inf ( (/) , RR* , < ) = +oo ) |
| 12 |
9 11
|
eqtrd |
|- ( B = (/) -> inf ( B , RR* , < ) = +oo ) |
| 13 |
12
|
eqcomd |
|- ( B = (/) -> +oo = inf ( B , RR* , < ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ B = (/) ) -> +oo = inf ( B , RR* , < ) ) |
| 15 |
8 14
|
breqtrd |
|- ( ( ph /\ B = (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 16 |
|
neqne |
|- ( -. B = (/) -> B =/= (/) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ -. B = (/) ) -> B =/= (/) ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) e. RR* ) |
| 19 |
|
id |
|- ( r e. RR -> r e. RR ) |
| 20 |
|
2re |
|- 2 e. RR |
| 21 |
20
|
a1i |
|- ( r e. RR -> 2 e. RR ) |
| 22 |
19 21
|
resubcld |
|- ( r e. RR -> ( r - 2 ) e. RR ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( r - 2 ) e. RR ) |
| 24 |
|
simpr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( B , RR* , < ) = -oo ) |
| 25 |
|
infxrunb2 |
|- ( B C_ RR* -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
| 26 |
2 25
|
syl |
|- ( ph -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
| 28 |
24 27
|
mpbird |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> A. y e. RR E. x e. B x < y ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> A. y e. RR E. x e. B x < y ) |
| 30 |
|
breq2 |
|- ( y = ( r - 2 ) -> ( x < y <-> x < ( r - 2 ) ) ) |
| 31 |
30
|
rexbidv |
|- ( y = ( r - 2 ) -> ( E. x e. B x < y <-> E. x e. B x < ( r - 2 ) ) ) |
| 32 |
31
|
rspcva |
|- ( ( ( r - 2 ) e. RR /\ A. y e. RR E. x e. B x < y ) -> E. x e. B x < ( r - 2 ) ) |
| 33 |
23 29 32
|
syl2anc |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> E. x e. B x < ( r - 2 ) ) |
| 34 |
|
simpl |
|- ( ( ph /\ x e. B ) -> ph ) |
| 35 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 36 |
|
1rp |
|- 1 e. RR+ |
| 37 |
36
|
a1i |
|- ( ( ph /\ x e. B ) -> 1 e. RR+ ) |
| 38 |
|
1ex |
|- 1 e. _V |
| 39 |
|
eleq1 |
|- ( y = 1 -> ( y e. RR+ <-> 1 e. RR+ ) ) |
| 40 |
39
|
3anbi3d |
|- ( y = 1 -> ( ( ph /\ x e. B /\ y e. RR+ ) <-> ( ph /\ x e. B /\ 1 e. RR+ ) ) ) |
| 41 |
|
oveq2 |
|- ( y = 1 -> ( x +e y ) = ( x +e 1 ) ) |
| 42 |
41
|
breq2d |
|- ( y = 1 -> ( z <_ ( x +e y ) <-> z <_ ( x +e 1 ) ) ) |
| 43 |
42
|
rexbidv |
|- ( y = 1 -> ( E. z e. A z <_ ( x +e y ) <-> E. z e. A z <_ ( x +e 1 ) ) ) |
| 44 |
40 43
|
imbi12d |
|- ( y = 1 -> ( ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) <-> ( ( ph /\ x e. B /\ 1 e. RR+ ) -> E. z e. A z <_ ( x +e 1 ) ) ) ) |
| 45 |
38 44 3
|
vtocl |
|- ( ( ph /\ x e. B /\ 1 e. RR+ ) -> E. z e. A z <_ ( x +e 1 ) ) |
| 46 |
34 35 37 45
|
syl3anc |
|- ( ( ph /\ x e. B ) -> E. z e. A z <_ ( x +e 1 ) ) |
| 47 |
46
|
adantlr |
|- ( ( ( ph /\ r e. RR ) /\ x e. B ) -> E. z e. A z <_ ( x +e 1 ) ) |
| 48 |
47
|
3adant3 |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> E. z e. A z <_ ( x +e 1 ) ) |
| 49 |
|
simp1l |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> ph ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> ph ) |
| 51 |
50 1
|
syl |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> A C_ RR* ) |
| 52 |
50 2
|
syl |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> B C_ RR* ) |
| 53 |
|
simp1r |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> r e. RR ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> r e. RR ) |
| 55 |
|
simp2 |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> x e. B ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> x e. B ) |
| 57 |
|
simpll3 |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> x < ( r - 2 ) ) |
| 58 |
|
simplr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z e. A ) |
| 59 |
|
simpr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z <_ ( x +e 1 ) ) |
| 60 |
51 52 54 56 57 58 59
|
infleinflem2 |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z < r ) |
| 61 |
60
|
ex |
|- ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) -> ( z <_ ( x +e 1 ) -> z < r ) ) |
| 62 |
61
|
reximdva |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> ( E. z e. A z <_ ( x +e 1 ) -> E. z e. A z < r ) ) |
| 63 |
48 62
|
mpd |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> E. z e. A z < r ) |
| 64 |
63
|
3exp |
|- ( ( ph /\ r e. RR ) -> ( x e. B -> ( x < ( r - 2 ) -> E. z e. A z < r ) ) ) |
| 65 |
64
|
adantlr |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( x e. B -> ( x < ( r - 2 ) -> E. z e. A z < r ) ) ) |
| 66 |
65
|
rexlimdv |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( E. x e. B x < ( r - 2 ) -> E. z e. A z < r ) ) |
| 67 |
33 66
|
mpd |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> E. z e. A z < r ) |
| 68 |
67
|
ralrimiva |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> A. r e. RR E. z e. A z < r ) |
| 69 |
|
infxrunb2 |
|- ( A C_ RR* -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
| 70 |
1 69
|
syl |
|- ( ph -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
| 72 |
68 71
|
mpbid |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) = -oo ) |
| 73 |
72 24
|
eqtr4d |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) = inf ( B , RR* , < ) ) |
| 74 |
18 73
|
xreqled |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 75 |
74
|
adantlr |
|- ( ( ( ph /\ B =/= (/) ) /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 76 |
|
mnfxr |
|- -oo e. RR* |
| 77 |
76
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo e. RR* ) |
| 79 |
|
infxrcl |
|- ( B C_ RR* -> inf ( B , RR* , < ) e. RR* ) |
| 80 |
2 79
|
syl |
|- ( ph -> inf ( B , RR* , < ) e. RR* ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> inf ( B , RR* , < ) e. RR* ) |
| 82 |
|
mnfle |
|- ( inf ( B , RR* , < ) e. RR* -> -oo <_ inf ( B , RR* , < ) ) |
| 83 |
81 82
|
syl |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo <_ inf ( B , RR* , < ) ) |
| 84 |
|
neqne |
|- ( -. inf ( B , RR* , < ) = -oo -> inf ( B , RR* , < ) =/= -oo ) |
| 85 |
84
|
necomd |
|- ( -. inf ( B , RR* , < ) = -oo -> -oo =/= inf ( B , RR* , < ) ) |
| 86 |
85
|
adantl |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo =/= inf ( B , RR* , < ) ) |
| 87 |
78 81 83 86
|
xrleneltd |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo < inf ( B , RR* , < ) ) |
| 88 |
5
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( A , RR* , < ) e. RR* ) |
| 89 |
80
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( B , RR* , < ) e. RR* ) |
| 90 |
|
nfv |
|- F/ b ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) |
| 91 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> B C_ RR* ) |
| 92 |
|
simpllr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> B =/= (/) ) |
| 93 |
|
simpr |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> -oo < inf ( B , RR* , < ) ) |
| 94 |
|
infxrbnd2 |
|- ( B C_ RR* -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
| 95 |
2 94
|
syl |
|- ( ph -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
| 97 |
93 96
|
mpbird |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> E. b e. RR A. x e. B b <_ x ) |
| 98 |
97
|
ad4ant13 |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> E. b e. RR A. x e. B b <_ x ) |
| 99 |
|
simpr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> w e. RR+ ) |
| 100 |
99
|
rphalfcld |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> ( w / 2 ) e. RR+ ) |
| 101 |
90 91 92 98 100
|
infrpge |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
| 102 |
|
simpll |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> ph ) |
| 103 |
|
simpr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> x e. B ) |
| 104 |
|
rphalfcl |
|- ( w e. RR+ -> ( w / 2 ) e. RR+ ) |
| 105 |
104
|
ad2antlr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> ( w / 2 ) e. RR+ ) |
| 106 |
|
ovex |
|- ( w / 2 ) e. _V |
| 107 |
|
eleq1 |
|- ( y = ( w / 2 ) -> ( y e. RR+ <-> ( w / 2 ) e. RR+ ) ) |
| 108 |
107
|
3anbi3d |
|- ( y = ( w / 2 ) -> ( ( ph /\ x e. B /\ y e. RR+ ) <-> ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) ) ) |
| 109 |
|
oveq2 |
|- ( y = ( w / 2 ) -> ( x +e y ) = ( x +e ( w / 2 ) ) ) |
| 110 |
109
|
breq2d |
|- ( y = ( w / 2 ) -> ( z <_ ( x +e y ) <-> z <_ ( x +e ( w / 2 ) ) ) ) |
| 111 |
110
|
rexbidv |
|- ( y = ( w / 2 ) -> ( E. z e. A z <_ ( x +e y ) <-> E. z e. A z <_ ( x +e ( w / 2 ) ) ) ) |
| 112 |
108 111
|
imbi12d |
|- ( y = ( w / 2 ) -> ( ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) <-> ( ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) ) ) |
| 113 |
106 112 3
|
vtocl |
|- ( ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
| 114 |
102 103 105 113
|
syl3anc |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
| 115 |
114
|
3adant3 |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
| 116 |
|
simp11l |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> ph ) |
| 117 |
116 1
|
syl |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> A C_ RR* ) |
| 118 |
116 2
|
syl |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> B C_ RR* ) |
| 119 |
|
simp11 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> ( ph /\ w e. RR+ ) ) |
| 120 |
119
|
simprd |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> w e. RR+ ) |
| 121 |
|
simp12 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> x e. B ) |
| 122 |
|
simp3 |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
| 123 |
122
|
3ad2ant1 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
| 124 |
|
simp2 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> z e. A ) |
| 125 |
|
simp3 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> z <_ ( x +e ( w / 2 ) ) ) |
| 126 |
117 118 120 121 123 124 125
|
infleinflem1 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
| 127 |
126
|
3exp |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> ( z e. A -> ( z <_ ( x +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) ) |
| 128 |
127
|
rexlimdv |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> ( E. z e. A z <_ ( x +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
| 129 |
115 128
|
mpd |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
| 130 |
129
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( x e. B -> ( x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) ) |
| 131 |
130
|
rexlimdv |
|- ( ( ph /\ w e. RR+ ) -> ( E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
| 132 |
131
|
ad4ant14 |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> ( E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
| 133 |
101 132
|
mpd |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
| 134 |
88 89 133
|
xrlexaddrp |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 135 |
87 134
|
syldan |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 136 |
75 135
|
pm2.61dan |
|- ( ( ph /\ B =/= (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 137 |
17 136
|
syldan |
|- ( ( ph /\ -. B = (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
| 138 |
15 137
|
pm2.61dan |
|- ( ph -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |