| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infleinflem2.a |
|
| 2 |
|
infleinflem2.b |
|
| 3 |
|
infleinflem2.r |
|
| 4 |
|
infleinflem2.x |
|
| 5 |
|
infleinflem2.t |
|
| 6 |
|
infleinflem2.z |
|
| 7 |
|
infleinflem2.l |
|
| 8 |
3
|
adantr |
|
| 9 |
|
simpr |
|
| 10 |
|
simpr |
|
| 11 |
|
mnflt |
|
| 12 |
11
|
adantr |
|
| 13 |
10 12
|
eqbrtrd |
|
| 14 |
8 9 13
|
syl2anc |
|
| 15 |
|
simpl |
|
| 16 |
|
neqne |
|
| 17 |
16
|
adantl |
|
| 18 |
3
|
adantr |
|
| 19 |
|
id |
|
| 20 |
2
|
sselda |
|
| 21 |
19 4 20
|
syl2anc |
|
| 22 |
21
|
adantr |
|
| 23 |
1
|
sselda |
|
| 24 |
19 6 23
|
syl2anc |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simpr |
|
| 27 |
|
pnfxr |
|
| 28 |
27
|
a1i |
|
| 29 |
|
peano2rem |
|
| 30 |
29
|
rexrd |
|
| 31 |
3 30
|
syl |
|
| 32 |
2 4
|
sseldd |
|
| 33 |
|
id |
|
| 34 |
|
1xr |
|
| 35 |
34
|
a1i |
|
| 36 |
33 35
|
xaddcld |
|
| 37 |
32 36
|
syl |
|
| 38 |
|
oveq1 |
|
| 39 |
|
1re |
|
| 40 |
|
renepnf |
|
| 41 |
39 40
|
ax-mp |
|
| 42 |
|
xaddmnf2 |
|
| 43 |
34 41 42
|
mp2an |
|
| 44 |
43
|
a1i |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
45
|
adantl |
|
| 47 |
29
|
mnfltd |
|
| 48 |
47
|
adantr |
|
| 49 |
46 48
|
eqbrtrd |
|
| 50 |
49
|
adantlr |
|
| 51 |
50
|
3adantl3 |
|
| 52 |
|
simpl |
|
| 53 |
|
simpl2 |
|
| 54 |
|
neqne |
|
| 55 |
54
|
adantl |
|
| 56 |
|
simp2 |
|
| 57 |
27
|
a1i |
|
| 58 |
|
id |
|
| 59 |
|
2re |
|
| 60 |
59
|
a1i |
|
| 61 |
58 60
|
resubcld |
|
| 62 |
61
|
rexrd |
|
| 63 |
62
|
3ad2ant1 |
|
| 64 |
|
simp3 |
|
| 65 |
61
|
ltpnfd |
|
| 66 |
65
|
3ad2ant1 |
|
| 67 |
56 63 57 64 66
|
xrlttrd |
|
| 68 |
56 57 67
|
xrltned |
|
| 69 |
68
|
adantr |
|
| 70 |
53 55 69
|
xrred |
|
| 71 |
|
id |
|
| 72 |
71
|
ad2antlr |
|
| 73 |
61
|
ad2antrr |
|
| 74 |
|
1red |
|
| 75 |
72 74
|
syl |
|
| 76 |
|
simpr |
|
| 77 |
72 73 75 76
|
ltadd1dd |
|
| 78 |
|
recn |
|
| 79 |
|
id |
|
| 80 |
|
2cnd |
|
| 81 |
|
1cnd |
|
| 82 |
79 80 81
|
subsubd |
|
| 83 |
|
2m1e1 |
|
| 84 |
83
|
oveq2i |
|
| 85 |
84
|
a1i |
|
| 86 |
82 85
|
eqtr3d |
|
| 87 |
78 86
|
syl |
|
| 88 |
87
|
ad2antrr |
|
| 89 |
77 88
|
breqtrd |
|
| 90 |
71 74
|
rexaddd |
|
| 91 |
90
|
breq1d |
|
| 92 |
91
|
ad2antlr |
|
| 93 |
89 92
|
mpbird |
|
| 94 |
93
|
an32s |
|
| 95 |
94
|
3adantl2 |
|
| 96 |
52 70 95
|
syl2anc |
|
| 97 |
51 96
|
pm2.61dan |
|
| 98 |
3 32 5 97
|
syl3anc |
|
| 99 |
24 37 31 7 98
|
xrlelttrd |
|
| 100 |
29
|
ltpnfd |
|
| 101 |
3 100
|
syl |
|
| 102 |
24 31 28 99 101
|
xrlttrd |
|
| 103 |
24 28 102
|
xrltned |
|
| 104 |
103
|
adantr |
|
| 105 |
25 26 104
|
xrred |
|
| 106 |
7
|
adantr |
|
| 107 |
|
simpl3 |
|
| 108 |
45
|
adantl |
|
| 109 |
|
mnflt |
|
| 110 |
109
|
adantr |
|
| 111 |
108 110
|
eqbrtrd |
|
| 112 |
|
mnfxr |
|
| 113 |
108 112
|
eqeltrdi |
|
| 114 |
|
rexr |
|
| 115 |
114
|
adantr |
|
| 116 |
113 115
|
xrltnled |
|
| 117 |
111 116
|
mpbid |
|
| 118 |
117
|
3ad2antl1 |
|
| 119 |
107 118
|
pm2.65da |
|
| 120 |
119
|
neqned |
|
| 121 |
105 22 106 120
|
syl3anc |
|
| 122 |
3 21 5 68
|
syl3anc |
|
| 123 |
122
|
adantr |
|
| 124 |
22 121 123
|
xrred |
|
| 125 |
5
|
adantr |
|
| 126 |
18 124 125
|
jca31 |
|
| 127 |
|
simplr |
|
| 128 |
|
simp-4r |
|
| 129 |
71 74
|
readdcld |
|
| 130 |
90 129
|
eqeltrd |
|
| 131 |
128 130
|
syl |
|
| 132 |
58
|
ad4antr |
|
| 133 |
|
simpr |
|
| 134 |
130
|
ad3antlr |
|
| 135 |
29
|
ad3antrrr |
|
| 136 |
58
|
ad3antrrr |
|
| 137 |
93
|
adantr |
|
| 138 |
136
|
ltm1d |
|
| 139 |
134 135 136 137 138
|
lttrd |
|
| 140 |
139
|
adantr |
|
| 141 |
127 131 132 133 140
|
lelttrd |
|
| 142 |
126 105 106 141
|
syl21anc |
|
| 143 |
15 17 142
|
syl2anc |
|
| 144 |
14 143
|
pm2.61dan |
|