Metamath Proof Explorer


Theorem infxrge0lb

Description: A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses infxrge0lb.a φA0+∞
infxrge0lb.b φBA
Assertion infxrge0lb φsupA0+∞<B

Proof

Step Hyp Ref Expression
1 infxrge0lb.a φA0+∞
2 infxrge0lb.b φBA
3 iccssxr 0+∞*
4 xrltso <Or*
5 soss 0+∞*<Or*<Or0+∞
6 3 4 5 mp2 <Or0+∞
7 6 a1i φ<Or0+∞
8 xrge0infss A0+∞x0+∞yA¬y<xy0+∞x<yzAz<y
9 1 8 syl φx0+∞yA¬y<xy0+∞x<yzAz<y
10 7 9 infcl φsupA0+∞<0+∞
11 3 10 sselid φsupA0+∞<*
12 1 2 sseldd φB0+∞
13 3 12 sselid φB*
14 7 9 inflb φBA¬B<supA0+∞<
15 2 14 mpd φ¬B<supA0+∞<
16 11 13 15 xrnltled φsupA0+∞<B