Metamath Proof Explorer


Theorem intmin

Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion intmin A B x B | A x = A

Proof

Step Hyp Ref Expression
1 vex y V
2 1 elintrab y x B | A x x B A x y x
3 ssid A A
4 sseq2 x = A A x A A
5 eleq2 x = A y x y A
6 4 5 imbi12d x = A A x y x A A y A
7 6 rspcv A B x B A x y x A A y A
8 3 7 mpii A B x B A x y x y A
9 2 8 syl5bi A B y x B | A x y A
10 9 ssrdv A B x B | A x A
11 ssintub A x B | A x
12 11 a1i A B A x B | A x
13 10 12 eqssd A B x B | A x = A