| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
1
|
sselda |
|
| 3 |
|
wuntr |
|
| 4 |
2 3
|
syl |
|
| 5 |
4
|
ralrimiva |
|
| 6 |
|
trint |
|
| 7 |
5 6
|
syl |
|
| 8 |
2
|
wun0 |
|
| 9 |
8
|
ralrimiva |
|
| 10 |
|
0ex |
|
| 11 |
10
|
elint2 |
|
| 12 |
9 11
|
sylibr |
|
| 13 |
12
|
ne0d |
|
| 14 |
2
|
adantlr |
|
| 15 |
|
intss1 |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
sselda |
|
| 18 |
17
|
an32s |
|
| 19 |
14 18
|
wununi |
|
| 20 |
19
|
ralrimiva |
|
| 21 |
|
vuniex |
|
| 22 |
21
|
elint2 |
|
| 23 |
20 22
|
sylibr |
|
| 24 |
14 18
|
wunpw |
|
| 25 |
24
|
ralrimiva |
|
| 26 |
|
vpwex |
|
| 27 |
26
|
elint2 |
|
| 28 |
25 27
|
sylibr |
|
| 29 |
14
|
adantlr |
|
| 30 |
18
|
adantlr |
|
| 31 |
15
|
adantl |
|
| 32 |
31
|
sselda |
|
| 33 |
32
|
an32s |
|
| 34 |
29 30 33
|
wunpr |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
|
prex |
|
| 37 |
36
|
elint2 |
|
| 38 |
35 37
|
sylibr |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
23 28 39
|
3jca |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
|
simpr |
|
| 43 |
|
intex |
|
| 44 |
42 43
|
sylib |
|
| 45 |
|
iswun |
|
| 46 |
44 45
|
syl |
|
| 47 |
7 13 41 46
|
mpbir3and |
|