Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | intwun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1 | sselda | |
3 | wuntr | |
|
4 | 2 3 | syl | |
5 | 4 | ralrimiva | |
6 | trint | |
|
7 | 5 6 | syl | |
8 | 2 | wun0 | |
9 | 8 | ralrimiva | |
10 | 0ex | |
|
11 | 10 | elint2 | |
12 | 9 11 | sylibr | |
13 | 12 | ne0d | |
14 | 2 | adantlr | |
15 | intss1 | |
|
16 | 15 | adantl | |
17 | 16 | sselda | |
18 | 17 | an32s | |
19 | 14 18 | wununi | |
20 | 19 | ralrimiva | |
21 | vuniex | |
|
22 | 21 | elint2 | |
23 | 20 22 | sylibr | |
24 | 14 18 | wunpw | |
25 | 24 | ralrimiva | |
26 | vpwex | |
|
27 | 26 | elint2 | |
28 | 25 27 | sylibr | |
29 | 14 | adantlr | |
30 | 18 | adantlr | |
31 | 15 | adantl | |
32 | 31 | sselda | |
33 | 32 | an32s | |
34 | 29 30 33 | wunpr | |
35 | 34 | ralrimiva | |
36 | prex | |
|
37 | 36 | elint2 | |
38 | 35 37 | sylibr | |
39 | 38 | ralrimiva | |
40 | 23 28 39 | 3jca | |
41 | 40 | ralrimiva | |
42 | simpr | |
|
43 | intex | |
|
44 | 42 43 | sylib | |
45 | iswun | |
|
46 | 44 45 | syl | |
47 | 7 13 41 46 | mpbir3and | |