Metamath Proof Explorer


Theorem intwun

Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion intwun A WUni A A WUni

Proof

Step Hyp Ref Expression
1 simpl A WUni A A WUni
2 1 sselda A WUni A u A u WUni
3 wuntr u WUni Tr u
4 2 3 syl A WUni A u A Tr u
5 4 ralrimiva A WUni A u A Tr u
6 trint u A Tr u Tr A
7 5 6 syl A WUni A Tr A
8 2 wun0 A WUni A u A u
9 8 ralrimiva A WUni A u A u
10 0ex V
11 10 elint2 A u A u
12 9 11 sylibr A WUni A A
13 12 ne0d A WUni A A
14 2 adantlr A WUni A x A u A u WUni
15 intss1 u A A u
16 15 adantl A WUni A u A A u
17 16 sselda A WUni A u A x A x u
18 17 an32s A WUni A x A u A x u
19 14 18 wununi A WUni A x A u A x u
20 19 ralrimiva A WUni A x A u A x u
21 vuniex x V
22 21 elint2 x A u A x u
23 20 22 sylibr A WUni A x A x A
24 14 18 wunpw A WUni A x A u A 𝒫 x u
25 24 ralrimiva A WUni A x A u A 𝒫 x u
26 vpwex 𝒫 x V
27 26 elint2 𝒫 x A u A 𝒫 x u
28 25 27 sylibr A WUni A x A 𝒫 x A
29 14 adantlr A WUni A x A y A u A u WUni
30 18 adantlr A WUni A x A y A u A x u
31 15 adantl A WUni A x A u A A u
32 31 sselda A WUni A x A u A y A y u
33 32 an32s A WUni A x A y A u A y u
34 29 30 33 wunpr A WUni A x A y A u A x y u
35 34 ralrimiva A WUni A x A y A u A x y u
36 prex x y V
37 36 elint2 x y A u A x y u
38 35 37 sylibr A WUni A x A y A x y A
39 38 ralrimiva A WUni A x A y A x y A
40 23 28 39 3jca A WUni A x A x A 𝒫 x A y A x y A
41 40 ralrimiva A WUni A x A x A 𝒫 x A y A x y A
42 simpr A WUni A A
43 intex A A V
44 42 43 sylib A WUni A A V
45 iswun A V A WUni Tr A A x A x A 𝒫 x A y A x y A
46 44 45 syl A WUni A A WUni Tr A A x A x A 𝒫 x A y A x y A
47 7 13 41 46 mpbir3and A WUni A A WUni