Metamath Proof Explorer


Theorem invf1o

Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism F e. ( X I Y ) has a unique inverse, denoted by ( ( InvC )F ) . Remark 3.12 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
isoval.n I=IsoC
Assertion invf1o φXNY:XIY1-1 ontoYIX

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 isoval.n I=IsoC
7 1 2 3 4 5 6 invf φXNY:XIYYIX
8 7 ffnd φXNYFnXIY
9 1 2 3 5 4 6 invf φYNX:YIXXIY
10 9 ffnd φYNXFnYIX
11 1 2 3 4 5 invsym2 φXNY-1=YNX
12 11 fneq1d φXNY-1FnYIXYNXFnYIX
13 10 12 mpbird φXNY-1FnYIX
14 dff1o4 XNY:XIY1-1 ontoYIXXNYFnXIYXNY-1FnYIX
15 8 13 14 sylanbrc φXNY:XIY1-1 ontoYIX