Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism F e. ( X I Y ) has a unique inverse, denoted by ( ( InvC )F ) . Remark 3.12 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invfval.b | |
|
invfval.n | |
||
invfval.c | |
||
invfval.x | |
||
invfval.y | |
||
isoval.n | |
||
Assertion | invf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | |
|
2 | invfval.n | |
|
3 | invfval.c | |
|
4 | invfval.x | |
|
5 | invfval.y | |
|
6 | isoval.n | |
|
7 | 1 2 3 4 5 6 | invf | |
8 | 7 | ffnd | |
9 | 1 2 3 5 4 6 | invf | |
10 | 9 | ffnd | |
11 | 1 2 3 4 5 | invsym2 | |
12 | 11 | fneq1d | |
13 | 10 12 | mpbird | |
14 | dff1o4 | |
|
15 | 8 13 14 | sylanbrc | |