Metamath Proof Explorer


Theorem invisoinvl

Description: The inverse of an isomorphism F (which is unique because of invf and is therefore denoted by ( ( X N Y )F ) , see also remark 3.12 in Adamek p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses invisoinv.b B=BaseC
invisoinv.i I=IsoC
invisoinv.n N=InvC
invisoinv.c φCCat
invisoinv.x φXB
invisoinv.y φYB
invisoinv.f φFXIY
Assertion invisoinvl φXNYFYNXF

Proof

Step Hyp Ref Expression
1 invisoinv.b B=BaseC
2 invisoinv.i I=IsoC
3 invisoinv.n N=InvC
4 invisoinv.c φCCat
5 invisoinv.x φXB
6 invisoinv.y φYB
7 invisoinv.f φFXIY
8 eqid compC=compC
9 eqid IdC=IdC
10 1 9 4 6 idiso φIdCYYIsoCY
11 2 a1i φI=IsoC
12 11 oveqd φYIY=YIsoCY
13 10 12 eleqtrrd φIdCYYIY
14 1 3 4 5 6 2 7 8 6 13 invco φIdCYXYcompCYFXNYXNYFYYcompCXYNYIdCY
15 eqid HomC=HomC
16 1 15 2 4 5 6 isohom φXIYXHomCY
17 16 7 sseldd φFXHomCY
18 1 15 9 4 5 8 6 17 catlid φIdCYXYcompCYF=F
19 3 a1i φN=InvC
20 19 oveqd φYNY=YInvCY
21 20 fveq1d φYNYIdCY=YInvCYIdCY
22 1 9 4 6 idinv φYInvCYIdCY=IdCY
23 21 22 eqtrd φYNYIdCY=IdCY
24 23 oveq2d φXNYFYYcompCXYNYIdCY=XNYFYYcompCXIdCY
25 1 15 2 4 6 5 isohom φYIXYHomCX
26 1 3 4 5 6 2 invf φXNY:XIYYIX
27 26 7 ffvelcdmd φXNYFYIX
28 25 27 sseldd φXNYFYHomCX
29 1 15 9 4 6 8 5 28 catrid φXNYFYYcompCXIdCY=XNYF
30 24 29 eqtrd φXNYFYYcompCXYNYIdCY=XNYF
31 14 18 30 3brtr3d φFXNYXNYF
32 1 3 4 6 5 invsym φXNYFYNXFFXNYXNYF
33 31 32 mpbird φXNYFYNXF