Description: The inverse of an isomorphism F (which is unique because of invf and is therefore denoted by ( ( X N Y )F ) , see also remark 3.12 in Adamek p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invisoinv.b | |
|
invisoinv.i | |
||
invisoinv.n | |
||
invisoinv.c | |
||
invisoinv.x | |
||
invisoinv.y | |
||
invisoinv.f | |
||
Assertion | invisoinvl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | |
|
2 | invisoinv.i | |
|
3 | invisoinv.n | |
|
4 | invisoinv.c | |
|
5 | invisoinv.x | |
|
6 | invisoinv.y | |
|
7 | invisoinv.f | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 9 4 6 | idiso | |
11 | 2 | a1i | |
12 | 11 | oveqd | |
13 | 10 12 | eleqtrrd | |
14 | 1 3 4 5 6 2 7 8 6 13 | invco | |
15 | eqid | |
|
16 | 1 15 2 4 5 6 | isohom | |
17 | 16 7 | sseldd | |
18 | 1 15 9 4 5 8 6 17 | catlid | |
19 | 3 | a1i | |
20 | 19 | oveqd | |
21 | 20 | fveq1d | |
22 | 1 9 4 6 | idinv | |
23 | 21 22 | eqtrd | |
24 | 23 | oveq2d | |
25 | 1 15 2 4 6 5 | isohom | |
26 | 1 3 4 5 6 2 | invf | |
27 | 26 7 | ffvelcdmd | |
28 | 25 27 | sseldd | |
29 | 1 15 9 4 6 8 5 28 | catrid | |
30 | 24 29 | eqtrd | |
31 | 14 18 30 | 3brtr3d | |
32 | 1 3 4 6 5 | invsym | |
33 | 31 32 | mpbird | |