Metamath Proof Explorer


Theorem invrcn2

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J=TopOpenR
invrcn.i I=invrR
invrcn.u U=UnitR
Assertion invrcn2 RTopDRingIJ𝑡UCnJ𝑡U

Proof

Step Hyp Ref Expression
1 mulrcn.j J=TopOpenR
2 invrcn.i I=invrR
3 invrcn.u U=UnitR
4 eqid mulGrpR=mulGrpR
5 4 3 tdrgunit RTopDRingmulGrpR𝑠UTopGrp
6 eqid mulGrpR𝑠U=mulGrpR𝑠U
7 4 1 mgptopn J=TopOpenmulGrpR
8 6 7 resstopn J𝑡U=TopOpenmulGrpR𝑠U
9 3 6 2 invrfval I=invgmulGrpR𝑠U
10 8 9 tgpinv mulGrpR𝑠UTopGrpIJ𝑡UCnJ𝑡U
11 5 10 syl RTopDRingIJ𝑡UCnJ𝑡U